コード例 #1
0
 def convert_tokens_to_ids(self, tokens):
     """Converts a sequence of tokens into ids using the vocab."""
     ids = []
     for token in tokens:
         ids.append(self.vocab[token])
     if len(ids) > self.max_len:
         logger.warning(
             "Token indices sequence length is longer than the specified maximum "
             " sequence length for this BERT model ({} > {}). Running this"
             " sequence through BERT will result in indexing errors".format(
                 len(ids), self.max_len))
     return ids
コード例 #2
0
 def save_vocabulary(self, vocab_path):
     """Save the tokenizer vocabulary to a directory or file."""
     index = 0
     if os.path.isdir(vocab_path):
         vocab_file = os.path.join(vocab_path, VOCAB_NAME)
     else:
         vocab_file = vocab_path
     with open(vocab_file, "w", encoding="utf-8") as writer:
         for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
             if index != token_index:
                 logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
                                " Please check that the vocabulary is not corrupted!".format(vocab_file))
                 index = token_index
             writer.write(token + u'\n')
             index += 1
     return vocab_file
コード例 #3
0
    def __init__(self, vocab: Vocabulary, model_dir_or_name: str = 'en-base-uncased', layers: str = '-1',
                 pool_method: str = 'first', word_dropout=0, dropout=0, include_cls_sep: bool = False,
                 pooled_cls=True, requires_grad: bool = True, auto_truncate: bool = False, layer_num=12):
        """
        
        :param ~fastNLP.Vocabulary vocab: 词表
        :param str model_dir_or_name: 模型所在目录或者模型的名称。当传入模型所在目录时,目录中应该包含一个词表文件(以.txt作为后缀名),
            权重文件(以.bin作为文件后缀名), 配置文件(以.json作为后缀名)。
        :param str layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,层的序号是
            从0开始,可以以负数去索引倒数几层。
        :param str pool_method: 因为在bert中,每个word会被表示为多个word pieces, 当获取一个word的表示的时候,怎样从它的word pieces
            中计算得到它对应的表示。支持 ``last`` , ``first`` , ``avg`` , ``max``。
        :param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
        :param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。
        :param bool include_cls_sep: bool,在bert计算句子的表示的时候,需要在前面加上[CLS]和[SEP], 是否在结果中保留这两个内容。 这样
            会使得word embedding的结果比输入的结果长两个token。如果该值为True,则在使用 :class::StackEmbedding 可能会与其它类型的
            embedding长度不匹配。
        :param bool pooled_cls: 返回的[CLS]是否使用预训练中的BertPool映射一下,仅在include_cls_sep时有效。如果下游任务只取[CLS]做预测,
            一般该值为True。
        :param bool requires_grad: 是否需要gradient以更新Bert的权重。
        :param bool auto_truncate: 当句子words拆分为word pieces长度超过bert最大允许长度(一般为512), 自动截掉拆分后的超过510个
            word pieces后的内容,并将第512个word piece置为[SEP]。超过长度的部分的encode结果直接全部置零。一般仅有只使用[CLS]
            来进行分类的任务将auto_truncate置为True。
        """
        super(BertEmbedding, self).__init__(vocab, word_dropout=word_dropout, dropout=dropout)

        if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR:
            if 'cn' in model_dir_or_name.lower() and pool_method not in ('first', 'last'):
                logger.warning("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve"
                               " faster speed.")
                warnings.warn("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve"
                              " faster speed.")
        
        self._word_sep_index = None
        if '[SEP]' in vocab:
            self._word_sep_index = vocab['[SEP]']
        
        self.model = _WordBertModel(model_dir_or_name=model_dir_or_name, vocab=vocab, layers=layers,
                                    pool_method=pool_method, include_cls_sep=include_cls_sep,
                                    pooled_cls=pooled_cls, auto_truncate=auto_truncate, min_freq=2, layer_num=layer_num)
        
        self.requires_grad = requires_grad
        self._embed_size = len(self.model.layers) * self.model.encoder.hidden_size
コード例 #4
0
    def from_pretrained(cls,
                        model_dir_or_name,
                        layer_num=12,
                        *inputs,
                        **kwargs):
        if layer_num > 12:
            return None
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        kwargs.pop('cache_dir', None)
        kwargs.pop('from_tf', None)

        # get model dir from name or dir
        pretrained_model_dir = _get_bert_dir(model_dir_or_name)

        # Load config
        config_file = _get_file_name_base_on_postfix(pretrained_model_dir,
                                                     '.json')
        config = BertConfig.from_json_file(config_file)

        if state_dict is None:
            weights_path = _get_file_name_base_on_postfix(
                pretrained_model_dir, '.bin')
            state_dict = torch.load(weights_path, map_location='cpu')
        else:
            logger.error(
                f'Cannot load parameters through `state_dict` variable.')
            raise RuntimeError(
                f'Cannot load parameters through `state_dict` variable.')

        model_type = 'BERT'
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            for key_name in BERT_KEY_RENAME_MAP_1:
                if key_name in key:
                    new_key = key.replace(key_name,
                                          BERT_KEY_RENAME_MAP_1[key_name])
                    if 'distilbert' in key:
                        model_type = 'DistilBert'
                    break
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            for key_name in BERT_KEY_RENAME_MAP_2:
                if key_name in key:
                    new_key = key.replace(key_name,
                                          BERT_KEY_RENAME_MAP_2[key_name])
                    break
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        ## 下段为fastHan处理所需
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            for key_name in ['embed.model.encoder']:
                if key_name in key:
                    new_key = key.replace(key_name, 'bert')
                    break
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        # Instantiate model.
        config.num_hidden_layers = layer_num
        model = cls(config, model_type=model_type, *inputs, **kwargs)
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(
                prefix[:-1], {})
            module._load_from_state_dict(state_dict, prefix, local_metadata,
                                         True, missing_keys, unexpected_keys,
                                         error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

        load(model, prefix='' if hasattr(model, 'bert') else 'bert.')
        if len(missing_keys) > 0:
            logger.warning(
                "Weights of {} not initialized from pretrained model: {}".
                format(model.__class__.__name__, missing_keys))
        #if len(unexpected_keys) > 0:
        #    logger.warning("Weights from pretrained model not used in {}: {}".format(
        #        model.__class__.__name__, unexpected_keys))

        logger.info(
            f"Load pre-trained {model_type} parameters from file {weights_path}."
        )
        return model