コード例 #1
0
    def objective(trial: optuna.trial.Trial) -> float:

        model = nn.Sequential(nn.Linear(20, 1), nn.Sigmoid())
        learn = Learner(
            data_bunch,
            model,
            metrics=[accuracy],
            callback_fns=[
                partial(FastAIPruningCallback,
                        trial=trial,
                        monitor="valid_loss")
            ],
        )

        learn.fit(1)

        return 1.0
コード例 #2
0
    def __init__(self,
                 data,
                 scales=None,
                 ratios=None,
                 backbone=None,
                 pretrained_path=None):

        # Set default backbone to be 'resnet50'
        if backbone is None:
            backbone = models.resnet50

        super().__init__(data, backbone)

        # Check if a backbone provided is compatible, use resnet50 as default
        if not self._check_backbone_support(backbone):
            raise Exception(
                f"Enter only compatible backbones from {', '.join(self.supported_backbones)}"
            )

        self.name = "RetinaNet"
        self._code = code

        self.scales = ifnone(scales, [1, 2**(-1 / 3), 2**(-2 / 3)])
        self.ratios = ifnone(ratios, [1 / 2, 1, 2])
        self._n_anchors = len(self.scales) * len(self.ratios)

        self._data = data
        self._chip_size = (data.chip_size, data.chip_size)

        # Cut-off the backbone before the penultimate layer
        self._encoder = create_body(self._backbone, -2)

        # Initialize the model, loss function and the Learner object
        self._model = RetinaNetModel(self._encoder,
                                     n_classes=data.c - 1,
                                     final_bias=-4,
                                     chip_size=self._chip_size,
                                     n_anchors=self._n_anchors)
        self._loss_f = RetinaNetFocalLoss(sizes=self._model.sizes,
                                          scales=self.scales,
                                          ratios=self.ratios)
        self.learn = Learner(data, self._model, loss_func=self._loss_f)
        self.learn.split([self._model.encoder[6], self._model.c5top5])
        self.learn.freeze()
        if pretrained_path is not None:
            self.load(str(pretrained_path))
コード例 #3
0
ファイル: tracking.py プロジェクト: lyksdu/langmodels
def change_path_to_permanent(experiment_run: ExperimentRun, learner: Learner) -> None:
    old_full_path: str = str(learner.path / learner.model_dir)
    new_full_path: str = experiment_run.perm_path_to_model
    new_path, new_model_dir = os.path.split(new_full_path)
    if str(learner.path) != new_path:
        raise AssertionError(f"When changing model path to permanent, path to models must remain the same. "
                             f"However trying to rename: {old_full_path} -> {new_full_path}")
    learner.model_dir = new_model_dir
    os.rename(old_full_path, new_full_path)
コード例 #4
0
def main():
    model = PSMNet(args.maxdisp, args.mindisp).cuda()
    if args.load_model is not None:
        if args.load is not None:
            warn('args.load is not None. load_model will be covered by load.')
        ckpt = torch.load(args.load_model, 'cpu')
        if 'model' in ckpt.keys():
            pretrained = ckpt['model']
        elif 'state_dict' in ckpt.keys():
            pretrained = ckpt['state_dict']
        else:
            raise RuntimeError()
        pretrained = {
            k.replace('module.', ''): v
            for k, v in pretrained.items()
        }
        model.load_state_dict(pretrained)
    train_dl = DataLoader(KITTIRoiDataset(args.data_dir, 'train',
                                          args.resolution, args.maxdisp,
                                          args.mindisp),
                          batch_size=args.batch_size,
                          shuffle=True,
                          num_workers=args.workers)
    val_dl = DataLoader(KITTIRoiDataset(args.data_dir, 'val', args.resolution,
                                        args.maxdisp, args.mindisp),
                        batch_size=args.batch_size,
                        num_workers=args.workers)

    loss_fn = PSMLoss()

    databunch = DataBunch(train_dl, val_dl, device='cuda')
    learner = Learner(databunch,
                      model,
                      loss_func=loss_fn,
                      model_dir=args.model_dir)
    learner.callbacks = [
        DistributedSaveModelCallback(learner),
        TensorBoardCallback(learner)
    ]
    if num_gpus > 1:
        learner.to_distributed(get_rank())
    if args.load is not None:
        learner.load(args.load)
    if args.mode == 'train':
        learner.fit(args.epochs, args.maxlr)
    elif args.mode == 'train_oc':
        fit_one_cycle(learner, args.epochs, args.maxlr)
    else:
        raise ValueError('args.mode not supported.')
コード例 #5
0
 def get_list_from_model(learn:Learner, ds_type:DatasetType, batch:Tuple)->[]:
     "Factory method to convert a batch of model images to a list of ModelImageSet."
     image_sets = []
     x,y = batch[0],batch[1]
     preds = learn.pred_batch(ds_type=ds_type, batch=(x,y), reconstruct=True)  
     for orig_px, real_px, gen in zip(x,y,preds):
         orig, real = Image(px=orig_px), Image(px=real_px)
         image_set = ModelImageSet(orig=orig, real=real, gen=gen)
         image_sets.append(image_set)
     return image_sets  
コード例 #6
0
ファイル: critics.py プロジェクト: praduca/DeOldify
def colorize_crit_learner(
    data: ImageDataBunch,
    loss_critic=AdaptiveLoss(nn.BCEWithLogitsLoss()),
    nf: int = 256,
) -> Learner:
    return Learner(
        data,
        custom_gan_critic(nf=nf),
        metrics=accuracy_thresh_expand,
        loss_func=loss_critic,
        wd=1e-3,
    )
コード例 #7
0
    def __init__(self, data, model_conf, backbone=None, pretrained_path=None):

        super().__init__(data, backbone)
        self.model_conf = model_conf()
        self.model_conf_class = model_conf
        self._backend = 'pytorch'
        model = self.model_conf.get_model(data, backbone)
        if self._is_multispectral:
            model = _change_tail(model, data)
        if not _isnotebook() and os.name == 'posix':
            _set_ddp_multigpu(self)
            if self._multigpu_training:
                self.learn = Learner(
                    data, model,
                    loss_func=self.model_conf.loss).to_distributed(
                        self._rank_distributed)
            else:
                self.learn = Learner(data,
                                     model,
                                     loss_func=self.model_conf.loss)
        else:
            self.learn = Learner(data, model, loss_func=self.model_conf.loss)
        self.learn.callbacks.append(
            self.train_callback(self.learn, self.model_conf.on_batch_begin))
        self._code = code
        self._arcgis_init_callback()  # make first conv weights learnable
        if pretrained_path is not None:
            self.load(pretrained_path)
コード例 #8
0
def run_alexnet(input_path, output_path, batch_size, epochs, learning_rate):
    # Load image databunch
    print("[INFO] Loading Data")
    data = load_catsvsdog(input_path, batch_size)

    # Defining the learner
    alexnet_learner = Learner(
        data=data,
        model=ALEXNet(n_class=data.c),
        loss_func=nn.CrossEntropyLoss(),
        metrics=accuracy,
    )

    # Training the model
    print("[INFO] Training started.")
    alexnet_learner.fit_one_cycle(epochs, learning_rate)

    # Validation accuracy
    val_acc = int(
        np.round(alexnet_learner.recorder.metrics[-1][0].numpy().tolist(), 3) *
        1000)

    # Saving the model
    print("[INFO] Saving model weights.")
    alexnet_learner.save("alexnet_catsvsdog_stg_1_" + str(val_acc))

    # Evaluation
    print("[INFO] Evaluating Network.")
    evaluate_model(alexnet_learner, output_path, plot=True)
コード例 #9
0
ファイル: model.py プロジェクト: zeta1999/keraTorch
class Sequential:
    def __init__(self, model=None):
        self.layers = []
        self.last_dim = None
        self.model = model
        self.device = torch.device('cpu')
        if torch.cuda.is_available():
            self.device = torch.device('cuda')

    def add(self, layer):
        layer = layer.get_layer(self.last_dim)
        self.last_dim = layer['output_dim']
        self.layers.extend(layer['layers'])

    def compile(self, loss, optimizer=None):
        if len(self.layers) > 0:
            self.model = nn.Sequential(*self.layers)
        self.loss = loss

    def fit(self, x, y, bs, epochs, lr=1e-3, one_cycle=True, get_lr=True):
        db = create_db(x, y, bs=bs)
        self.learn = Learner(db, self.model, loss_func=self.loss)
        if one_cycle:
            self.learn.fit_one_cycle(epochs, lr)
        else:
            self.learn.fit(epochs, lr)

    def lr_find(self, x, y, bs):
        db = create_db(x, y, bs=bs)
        learn = Learner(db, self.model, loss_func=self.loss)
        learn.lr_find()
        clear_output()
        learn.recorder.plot(suggestion=True)

    def predict(self, x):
        self.learn.model.eval()
        with torch.no_grad():
            y_preds = self.learn.model(torch.Tensor(x).to(device))
        return y_preds.cpu().numpy()
コード例 #10
0
ファイル: model.py プロジェクト: goparajug/ComputerVision1
def compute_feature(im_or_path: Image, learn: Learner,
                    embedding_layer: Module) -> List[float]:
    """Compute features for a single image

    Args:
        im_or_path: Image or path to image
        learn: Trained model to use as featurizer
        embedding_layer: Number of columns on which to display the images

    Returns: DNN feature of the provided image.

    """
    if isinstance(im_or_path, str):
        im = open_image(im_or_path, convert_mode="RGB")
    else:
        im = im_or_path
    featurizer = SaveFeatures(embedding_layer)
    featurizer.features = None
    learn.predict(im)
    feats = featurizer.features[0][:]
    assert len(feats) > 1
    featurizer.features = None
    return feats
コード例 #11
0
def do_train(
    cfg,
    model,
    train_dl,
    valid_dl,
    optimizer,
    loss_fn,
    metrics=[],
    callbacks: list = [],
):

    log_period = cfg.SOLVER.LOG_PERIOD
    checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
    output_dir = cfg.OUTPUT_DIR
    device = cfg.MODEL.DEVICE
    epochs = cfg.SOLVER.MAX_EPOCHS

    data_bunch = DataBunch(train_dl, valid_dl)
    learn = Learner(data_bunch, model, loss_func=loss_fn)
    callbacks.append(LoggingLog(learn, "template_model.train"))
    if metrics:
        learn.metrics = metrics
    learn.fit_one_cycle(epochs, cfg.SOLVER.BASE_LR)
コード例 #12
0
def main(test, s3_data, batch, debug):
    """Train a semantic segmentation FPN model on the CamVid-Tiramisu dataset."""
    if batch:
        run_on_batch(test, debug)

    # Setup options
    batch_sz = 8
    num_workers = 4
    num_epochs = 20
    lr = 1e-4
    backbone_arch = 'resnet18'
    sample_pct = 1.0

    if test:
        batch_sz = 1
        num_workers = 0
        num_epochs = 2
        sample_pct = 0.01

    # Setup data
    tmp_dir_obj = tempfile.TemporaryDirectory()
    tmp_dir = tmp_dir_obj.name
    output_dir = local_output_uri
    make_dir(output_dir)

    data_dir = download_data(s3_data, tmp_dir)
    data = get_databunch(data_dir,
                         sample_pct=sample_pct,
                         batch_sz=batch_sz,
                         num_workers=num_workers)
    print(data)
    plot_data(data, output_dir)

    # Setup and train model
    num_classes = data.c
    model = SegmentationFPN(backbone_arch, num_classes)
    metrics = [acc_camvid]
    learn = Learner(data,
                    model,
                    metrics=metrics,
                    loss_func=SegmentationFPN.loss,
                    path=output_dir)
    learn.unfreeze()

    callbacks = [
        SaveModelCallback(learn, monitor='valid_loss'),
        CSVLogger(learn, filename='log'),
    ]

    learn.fit_one_cycle(num_epochs, lr, callbacks=callbacks)

    # Plot predictions and sync
    plot_preds(data, learn, output_dir)

    if s3_data:
        sync_to_dir(output_dir, remote_output_uri)
コード例 #13
0
ファイル: fastai_kernel.py プロジェクト: pennz/kaggle_runner
    def create_learner(cls,
                       k=None,
                       data=None,
                       model=None,
                       opt_func=None,
                       loss_func=None,
                       metrics=None,
                       **kargs):
        """opt_func should pass seprately

        Args:
          k: (Default value = None)
          data: (Default value = None)
          model: (Default value = None)
          opt_func: (Default value = None)
          loss_func: (Default value = None)
          metrics: (Default value = None)
          **kargs: 

        Returns:

        """

        if k is not None:
            data = k.data if hasattr(k,
                                     'data') and k.data is not None else data
            model = k.model if hasattr(
                k, 'model') and k.model is not None else model
            loss_func = k.model_loss if hasattr(
                k, 'model_loss') and k.model_loss is not None else loss_func
            metrics = k.model_metrics if hasattr(
                k,
                'model_metrics') and k.model_metrics is not None else metrics

        assert data is not None
        assert opt_func is not None
        learner = Learner(
            data,
            model,
            opt_func,
            loss_func=loss_func,
            metrics=metrics,
            bn_wd=False,
            **kargs)  # opt_func postitional parameter is before loss_func

        return learner
コード例 #14
0
ファイル: model.py プロジェクト: ujjwalmsft/ComputerVision
def compute_features_learner(
        data, dataset_type: DatasetType, learn: Learner,
        embedding_layer: Module) -> List[Dict[str, np.array]]:
    """Compute features for multiple image using mini-batching.

    Use this function to featurize the training or test set of a learner

    Args:
        dataset_type: Specify train, valid or test set.
        learn: Trained model to use as featurizer
        embedding_layer: Number of columns on which to display the images

    Note: this function processes each image at a time and is hence slower
          compared to using mini-batches of >1.

    Returns: DNN feature of the provided image.

    """
    # Note: In Fastai, for DatasetType.Train, only the output of complete minibatches is computed. Ie if one has 101 images,
    # and uses a minibatch size of 16, then len(feats) is 96 and not 101. For DatasetType.Valid this is not the case,
    # and len(feats) is as expected 101. A way around this is to use DatasetType.Fix instead when referring to the training set.
    # See e.g. issue: https://forums.fast.ai/t/get-preds-returning-less-results-than-length-of-original-dataset/34148

    if dataset_type == DatasetType.Train or dataset_type == DatasetType.Fix:
        dataset_type = (
            DatasetType.Fix
        )  # Training set without shuffeling and no dropping of last batch. See note above.
        label_list = list(data.train_ds.items)
    elif dataset_type == DatasetType.Valid:
        label_list = list(data.valid_ds.items)
    elif dataset_type == DatasetType.Test:
        label_list = list(data.test_ds.items)
    else:
        raise Exception(
            "Dataset_type needs to be of type DatasetType.Train, DatasetType.Valid, DatasetType.Test or DatasetType.Fix."
        )

    # Compute features
    featurizer = SaveFeatures(embedding_layer)
    _ = learn.get_preds(dataset_type)
    feats = featurizer.features[:]

    # Get corresponding image paths
    assert len(feats) == len(label_list)
    im_paths = [str(x) for x in label_list]
    return dict(zip(im_paths, feats))
コード例 #15
0
def show_prediction_vs_actual(sample_idx: int, learn: Learner) -> ImageSegment:
    """Return predicted mask, additionally print input image and tile-level label"""
    sample = learn.data.valid_ds[sample_idx]
    image, label = sample
    print("Label: " + str(label.__repr__()))
    image.show()
    batch = learn.data.one_item(image)
    pred = learn.pred_batch(batch=batch).squeeze(dim=0)
    img = pred.argmax(dim=0, keepdim=True)

    predicted_colors = torch.zeros(len(ALL_CLASSES))
    for i in img.unique():
        predicted_colors[i] = 1
    print("Predicted colors: " + str(predicted_colors))

    image_segment = ImageSegment(img)
    return image_segment
コード例 #16
0
def run_mnist(input_path,
              output_path,
              batch_size,
              epochs,
              learning_rate,
              model=Mnist_NN()):

    path = Path(input_path)

    ## Defining transformation
    ds_tfms = get_transforms(
        do_flip=False,
        flip_vert=False,
        max_rotate=15,
        max_zoom=1.1,
        max_lighting=0.2,
        max_warp=0.2,
    )

    ## Creating Databunch
    data = (ImageItemList.from_folder(path, convert_mode="L").split_by_folder(
        train="training", valid="testing").label_from_folder().transform(
            tfms=ds_tfms, size=28).databunch(bs=batch_size))

    ## Defining the learner
    mlp_learner = Learner(data=data,
                          model=model,
                          loss_func=nn.CrossEntropyLoss(),
                          metrics=accuracy)

    # Training the model
    mlp_learner.fit_one_cycle(epochs, learning_rate)

    val_acc = int(
        np.round(mlp_learner.recorder.metrics[-1][0].numpy().tolist(), 3) *
        1000)

    ## Saving the model
    mlp_learner.save("mlp_mnist_stg_1_" + str(val_acc))

    ## Evaluation
    print("Evaluating Network..")
    interp = ClassificationInterpretation.from_learner(mlp_learner)
    print(classification_report(interp.y_true, interp.pred_class))

    ## Plotting train and validation loss
    mlp_learner.recorder.plot_losses()
    plt.savefig(output_path + "/loss.png")

    mlp_learner.recorder.plot_metrics()
    plt.savefig(output_path + "/metric.png")
コード例 #17
0
    def __init__(self, data, pretrained_path=None, *args, **kwargs):
        super().__init__(data, None)

        if not HAS_FASTAI:
            raise_fastai_import_error(import_exception=import_exception, message="This model requires module 'torch_geometric' to be installed.", installation_steps=' ')
        
        self._backbone = None
        self.sample_point_num = kwargs.get('sample_point_num', data.max_point)
        self.learn = Learner(data,
                PointCNNSeg(self.sample_point_num, data.c, data.extra_dim, kwargs.get('encoder_params', None), kwargs.get('dropout', None)),
                loss_func=CrossEntropyPC(data.c),
                metrics=[AverageMetric(accuracy)],
                callback_fns=[partial(SamplePointsCallback, sample_point_num=self.sample_point_num)])
        self.encoder_params = self.learn.model.encoder_params

        self.learn.model = self.learn.model.to(self._device)

        if pretrained_path is not None:
            self.load(pretrained_path)
コード例 #18
0
ファイル: model.py プロジェクト: sravan90/ComputerVision
def compute_features_learner(
        data, dataset_type: DatasetType, learn: Learner,
        embedding_layer: Module) -> List[Dict[str, np.array]]:
    """Compute features for multiple image using mini-batching.

    Use this function to featurize the training or test set of a learner

    Args:
        dataset_type: Specify train, valid or test set.
        learn: Trained model to use as featurizer
        embedding_layer: Number of columns on which to display the images

    Note: this function processes each image at a time and is hence slower
          compared to using mini-batches of >1.

    Returns: DNN feature of the provided image.

    """
    if dataset_type == DatasetType.Train:
        label_list = list(data.train_ds.items)
    elif dataset_type == DatasetType.Valid:
        label_list = list(data.valid_ds.items)
    elif dataset_type == DatasetType.Test:
        label_list = list(data.test_ds.items)
    else:
        raise Exception(
            "Dataset_type needs to be of type DatasetType.Train, DatasetType.Valid or DatasetType.Test."
        )

    featurizer = SaveFeatures(embedding_layer)
    _ = learn.get_preds(dataset_type)
    feats = featurizer.features[:]

    # Get corresponding image paths
    im_paths = [str(x) for x in label_list]
    assert len(feats) == len(im_paths)
    return dict(zip(im_paths, feats))
コード例 #19
0
def run_shallownet(input_path, output_path, batch_size, epochs, learning_rate):

    path = Path(input_path)

    # Creating Databunch
    data = (
        ImageItemList.from_folder(path)
        .split_by_folder(train="train", valid="test")
        .label_from_folder()
        .transform(tfms=None, size=32)
        .databunch(bs=batch_size)
    )

    # Defining the learner
    sn_learner = Learner(
        data=data,
        model=ShallowNet(n_class=data.c, size=32, in_channels=3),
        loss_func=nn.CrossEntropyLoss(),
        metrics=accuracy,
    )

    # Training the model
    sn_learner.fit_one_cycle(epochs, learning_rate)

    val_acc = int(
        np.round(sn_learner.recorder.metrics[-1][0].numpy().tolist(), 3) * 1000
    )

    # Saving the model
    sn_learner.save("sn_cifar10_stg_1_" + str(val_acc))

    # Evaluation
    print("Evaluating Network..")
    interp = ClassificationInterpretation.from_learner(sn_learner)
    print(classification_report(interp.y_true, interp.pred_class))

    # Plotting train and validation loss
    sn_learner.recorder.plot_losses()
    plt.savefig(output_path + "/loss.png")

    sn_learner.recorder.plot_metrics()
    plt.savefig(output_path + "/metric.png")
コード例 #20
0
ファイル: generators.py プロジェクト: praduca/DeOldify
def unet_learner_wide(
    data: DataBunch,
    arch: Callable,
    pretrained: bool = True,
    blur_final: bool = True,
    norm_type: Optional[NormType] = NormType,
    split_on: Optional[SplitFuncOrIdxList] = None,
    blur: bool = False,
    self_attention: bool = False,
    y_range: Optional[Tuple[float, float]] = None,
    last_cross: bool = True,
    bottle: bool = False,
    nf_factor: int = 1,
    **kwargs: Any
) -> Learner:
    "Build Unet learner from `data` and `arch`."
    meta = cnn_config(arch)
    body = create_body(arch, pretrained)
    model = to_device(
        DynamicUnetWide(
            body,
            n_classes=data.c,
            blur=blur,
            blur_final=blur_final,
            self_attention=self_attention,
            y_range=y_range,
            norm_type=norm_type,
            last_cross=last_cross,
            bottle=bottle,
            nf_factor=nf_factor,
        ),
        data.device,
    )
    learn = Learner(data, model, **kwargs)
    learn.split(ifnone(split_on, meta['split']))
    if pretrained:
        learn.freeze()
    apply_init(model[2], nn.init.kaiming_normal_)
    return learn
コード例 #21
0
def run_ner(
        lang: str = 'eng',
        log_dir: str = 'logs',
        task: str = NER,
        batch_size: int = 1,
        epochs: int = 1,
        dataset: str = 'data/conll-2003/',
        loss: str = 'cross',
        max_seq_len: int = 128,
        do_lower_case: bool = False,
        warmup_proportion: float = 0.1,
        rand_seed: int = None,
        ds_size: int = None,
        data_bunch_path: str = 'data/conll-2003/db',
        tuned_learner: str = None,
        do_train: str = False,
        do_eval: str = False,
        save: bool = False,
        nameX: str = 'ner',
        mask: tuple = ('s', 's'),
):
    name = "_".join(
        map(str, [
            nameX, task, lang, mask[0], mask[1], loss, batch_size, max_seq_len,
            do_train, do_eval
        ]))
    log_dir = Path(log_dir)
    log_dir.mkdir(parents=True, exist_ok=True)
    init_logger(log_dir, name)

    if rand_seed:
        random.seed(rand_seed)
        np.random.seed(rand_seed)
        torch.manual_seed(rand_seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(rand_seed)

    trainset = dataset + lang + '/train.txt'
    devset = dataset + lang + '/dev.txt'
    testset = dataset + lang + '/test.txt'

    bert_model = 'bert-base-cased' if lang == 'eng' else 'bert-base-multilingual-cased'
    print(f'Lang: {lang}\nModel: {bert_model}\nRun: {name}')
    model = BertForTokenClassification.from_pretrained(bert_model,
                                                       num_labels=len(VOCAB),
                                                       cache_dir='bertm')
    if tuned_learner:
        print('Loading pretrained learner: ', tuned_learner)
        model.bert.load_state_dict(torch.load(tuned_learner))

    model = torch.nn.DataParallel(model)
    model_lr_group = bert_layer_list(model)
    layers = len(model_lr_group)
    kwargs = {'max_seq_len': max_seq_len, 'ds_size': ds_size, 'mask': mask}

    train_dl = DataLoader(dataset=NerDataset(trainset,
                                             bert_model,
                                             train=True,
                                             **kwargs),
                          batch_size=batch_size,
                          shuffle=True,
                          collate_fn=partial(pad, train=True))

    dev_dl = DataLoader(dataset=NerDataset(devset, bert_model, **kwargs),
                        batch_size=batch_size,
                        shuffle=False,
                        collate_fn=pad)

    test_dl = DataLoader(dataset=NerDataset(testset, bert_model, **kwargs),
                         batch_size=batch_size,
                         shuffle=False,
                         collate_fn=pad)

    data = DataBunch(train_dl=train_dl,
                     valid_dl=dev_dl,
                     test_dl=test_dl,
                     collate_fn=pad,
                     path=Path(data_bunch_path))

    train_opt_steps = int(len(train_dl.dataset) / batch_size) * epochs
    optim = BertAdam(model.parameters(),
                     lr=0.01,
                     warmup=warmup_proportion,
                     t_total=train_opt_steps)

    loss_fun = ner_loss_func if loss == 'cross' else partial(ner_loss_func,
                                                             zero=True)
    metrics = [Conll_F1()]

    learn = Learner(
        data,
        model,
        BertAdam,
        loss_func=loss_fun,
        metrics=metrics,
        true_wd=False,
        layer_groups=model_lr_group,
        path='learn' + nameX,
    )

    learn.opt = OptimWrapper(optim)

    lrm = 1.6

    # select set of starting lrs
    lrs_eng = [0.01, 5e-4, 3e-4, 3e-4, 1e-5]
    lrs_deu = [0.01, 5e-4, 5e-4, 3e-4, 2e-5]

    startlr = lrs_eng if lang == 'eng' else lrs_deu
    results = [['epoch', 'lr', 'f1', 'val_loss', 'train_loss', 'train_losses']]
    if do_train:
        learn.freeze()
        learn.fit_one_cycle(1, startlr[0], moms=(0.8, 0.7))
        learn.freeze_to(-3)
        lrs = learn.lr_range(slice(startlr[1] / (1.6**15), startlr[1]))
        learn.fit_one_cycle(1, lrs, moms=(0.8, 0.7))
        learn.freeze_to(-6)
        lrs = learn.lr_range(slice(startlr[2] / (1.6**15), startlr[2]))
        learn.fit_one_cycle(1, lrs, moms=(0.8, 0.7))
        learn.freeze_to(-12)
        lrs = learn.lr_range(slice(startlr[3] / (1.6**15), startlr[3]))
        learn.fit_one_cycle(1, lrs, moms=(0.8, 0.7))
        learn.unfreeze()
        lrs = learn.lr_range(slice(startlr[4] / (1.6**15), startlr[4]))
        learn.fit_one_cycle(1, lrs, moms=(0.8, 0.7))

    if do_eval:
        res = learn.validate(test_dl, metrics=metrics)
        met_res = [f'{m.__name__}: {r}' for m, r in zip(metrics, res[1:])]
        print(f'Validation on TEST SET:\nloss {res[0]}, {met_res}')
        results.append(['val', '-', res[1], res[0], '-', '-'])

    with open(log_dir / (name + '.csv'), 'a') as resultFile:
        wr = csv.writer(resultFile)
        wr.writerows(results)
コード例 #22
0
                      num_workers=0)
v_data = DLDataLoader(v_chain,
                      collate_fn=dlc.gdf_col,
                      pin_memory=False,
                      num_workers=0)

databunch = DataBunch(t_data, v_data, collate_fn=dlc.gdf_col, device="cuda")
t_final = time() - start
print(t_final)
print("Creating model")
start = time()
model = TabularModel(emb_szs=embeddings,
                     n_cont=len(cont_names),
                     out_sz=2,
                     layers=[512, 256])
learn = Learner(databunch, model, metrics=[accuracy])
learn.loss_func = torch.nn.CrossEntropyLoss()
t_final = time() - start
print(t_final)
print("Finding learning rate")
start = time()
learn.lr_find()
learn.recorder.plot(show_moms=True, suggestion=True)
learning_rate = 1.32e-2
epochs = 1
t_final = time() - start
print(t_final)
print("Running Training")
start = time()
learn.fit_one_cycle(epochs, learning_rate)
t_final = time() - start
コード例 #23
0
#siamese = SiameseNetwork(arch=arch)
#siamese = SiameseNet(emb_len=emb_len, arch=arch, forward_type='similarity', drop_rate=0.5)
siamese = SiameseNet(emb_len=emb_len,
                     arch=arch,
                     forward_type='distance',
                     drop_rate=0.5)
#siamese = SiameseNetwork2(arch=arch)
siamese.to(device)

# In[11]:

learn = Learner(
    data,
    siamese,
    #enable_validate=True,
    path=learn_path,
    #loss_func=BCEWithLogitsFlat(),
    loss_func=ContrastiveLoss(margin=contrastive_neg_margin),
    metrics=[avg_pos_dist, avg_neg_dist]
    #metrics=[lambda preds, targs: accuracy_thresh(preds.squeeze(), targs, sigmoid=False)]
)

learn.load(f'{name}_80')

dist_mat, val_target, _ = cal_mat(learn.model,
                                  data.valid_dl,
                                  data.fix_dl,
                                  ds_with_target1=True,
                                  ds_with_target2=True)

for threshold in np.linspace(1, 9, 30):
    top5_matrix, map5 = cal_mapk(dist_mat,
コード例 #24
0
def main(args):

    if args.deterministic:
        set_seed(42)

    # Set device
    if args.device is None:
        if torch.cuda.is_available():
            args.device = 'cuda:0'
        else:
            args.device = 'cpu'

    defaults.device = torch.device(args.device)

    # Aggregate path and labels into list for fastai ImageDataBunch
    fnames, labels, is_valid = [], [], []
    dataset = OpenFire(root=args.data_path,
                       train=True,
                       download=True,
                       img_folder=args.img_folder)
    for sample in dataset.data:
        fnames.append(
            dataset._images.joinpath(sample['name']).relative_to(dataset.root))
        labels.append(sample['target'])
        is_valid.append(False)
    dataset = OpenFire(root=args.data_path, train=False, download=True)
    for sample in dataset.data:
        fnames.append(
            dataset._images.joinpath(sample['name']).relative_to(dataset.root))
        labels.append(sample['target'])
        is_valid.append(True)

    df = pd.DataFrame.from_dict(
        dict(name=fnames, label=labels, is_valid=is_valid))

    # Split train and valid sets
    il = vision.ImageList.from_df(
        df, path=args.data_path).split_from_df('is_valid')
    # Encode labels
    il = il.label_from_df(cols='label',
                          label_cls=FloatList if args.binary else CategoryList)
    # Set transformations
    il = il.transform(vision.get_transforms(), size=args.resize)
    # Create the Databunch
    data = il.databunch(bs=args.batch_size,
                        num_workers=args.workers).normalize(
                            vision.imagenet_stats)
    # Metric
    metric = partial(vision.accuracy_thresh,
                     thresh=0.5) if args.binary else vision.error_rate
    # Create model
    model = models.__dict__[args.model](imagenet_pretrained=args.pretrained,
                                        num_classes=data.c,
                                        lin_features=args.lin_feats,
                                        concat_pool=args.concat_pool,
                                        bn_final=args.bn_final,
                                        dropout_prob=args.dropout_prob)
    # Create learner
    learner = Learner(data,
                      model,
                      wd=args.weight_decay,
                      loss_func=CustomBCELogitsLoss()
                      if args.binary else nn.CrossEntropyLoss(),
                      metrics=metric)

    # Form layer group for optimization
    meta = model_meta.get(args.model, _default_meta)
    learner.split(meta['split'])
    # Freeze model's head
    if args.pretrained:
        learner.freeze()

    if args.resume:
        learner.load(args.resume)
    if args.unfreeze:
        learner.unfreeze()

    learner.fit_one_cycle(args.epochs,
                          max_lr=slice(None, args.lr, None),
                          div_factor=args.div_factor,
                          final_div=args.final_div_factor)

    learner.save(args.checkpoint)
コード例 #25
0
# I think this checks to see which gpu is availabe for use
torch.device('cuda:0' if torch.cuda.is_available() else "cpu")

# In[5]:

# path to the CIFAR10 data
path = untar_data(URLs.CIFAR)

# In[6]:

number_of_epochs = 100
data = ImageDataBunch.from_folder(path, valid="test",
                                  bs=128).normalize(cifar_stats)
learn = Learner(
    data, model, silent=True
)  #,metrics=accuracy)# silent prevents the training metrics from printing

# In[ ]:

#learn.save('simple_model')

# In[ ]:

learn.lr_find()

# In[ ]:

learn.recorder.plot(suggestion=True)

# In[ ]:
コード例 #26
0
    def __init__(self, data=None, pretrained_path=None, **kwargs):

        if data is None:
            data = create_coco_data()
        else:
            #Removing normalization because YOLO ingests images with values in range 0-1
            data.remove_tfm(data.norm)
            data.norm, data.denorm = None, None

        super().__init__(data)

        #Creating a dummy class for the backbone because this model does not use a torchvision backbone
        class DarkNet53():
            def __init__(self):
                self.name = "DarkNet53"

        self._backbone = DarkNet53

        self._code = code
        self._data = data

        self.config_model = {}
        if getattr(data, "_is_coco", "") == True:
            self.config_model = coco_config()
        else:
            anchors = kwargs.get('anchors', None)
            self.config_model[
                'ANCHORS'] = anchors if anchors is not None else generate_anchors(
                    num_anchor=9, hw=data.height_width)
            self.config_model['ANCH_MASK'] = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
            self.config_model[
                'N_CLASSES'] = data.c - 1  # Subtract 1 for the background class
            n_bands = kwargs.get('n_bands', None)
            self.config_model[
                'N_BANDS'] = n_bands if n_bands is not None else data.x[
                    0].data.shape[0]

        self._model = YOLOv3_Model(self.config_model)

        pretrained = kwargs.get('pretrained_backbone', True)
        if pretrained:
            # Download (if required) and load YOLOv3 weights pretrained on COCO dataset
            weights_path = os.path.join(Path.home(), '.cache', 'weights')
            if not os.path.exists(weights_path): os.makedirs(weights_path)
            weights_file = os.path.join(weights_path, 'yolov3.weights')
            if not os.path.exists(weights_file):
                try:
                    download_yolo_weights(weights_path)
                    extract_zipfile(weights_path, 'yolov3.zip', remove=True)
                except Exception as e:
                    print(e)
                    print(
                        "[INFO] Can't download and extract COCO pretrained weights for YOLOv3.\nProceeding without pretrained weights."
                    )
            if os.path.exists(weights_file):
                parse_yolo_weights(self._model, weights_file)
                from IPython.display import clear_output
                clear_output()

        self._loss_f = YOLOv3_Loss()
        self.learn = Learner(data, self._model, loss_func=self._loss_f)
        self.learn.split([self._model.module_list[11]
                          ])  #Splitting the model at Darknet53 backbone
        self.learn.freeze()

        if pretrained_path is not None:
            self.load(str(pretrained_path))

        # make first conv weights learnable and use _show_results_multispectral when using multispectral data
        self._arcgis_init_callback()

        # Set a default flag to toggle appending labels with images before passing images through the model
        self.learn.predicting = False
        self.learn.callbacks.append(AppendLabelsCallback(self.learn))
コード例 #27
0
class YOLOv3(ArcGISModel):
    """
    Creates a YOLOv3 object detector.
    
    =====================   ===========================================
    **Argument**            **Description**
    ---------------------   -------------------------------------------
    data                    Required fastai Databunch. Returned data object from
                            `prepare_data` function.
    ---------------------   -------------------------------------------
    pretrained_path         Optional string. Path where pre-trained model is
                            saved.
    =====================   ===========================================
    
    :returns: `YOLOv3` Object
    """
    def __init__(self, data=None, pretrained_path=None, **kwargs):

        if data is None:
            data = create_coco_data()
        else:
            #Removing normalization because YOLO ingests images with values in range 0-1
            data.remove_tfm(data.norm)
            data.norm, data.denorm = None, None

        super().__init__(data)

        #Creating a dummy class for the backbone because this model does not use a torchvision backbone
        class DarkNet53():
            def __init__(self):
                self.name = "DarkNet53"

        self._backbone = DarkNet53

        self._code = code
        self._data = data

        self.config_model = {}
        if getattr(data, "_is_coco", "") == True:
            self.config_model = coco_config()
        else:
            anchors = kwargs.get('anchors', None)
            self.config_model[
                'ANCHORS'] = anchors if anchors is not None else generate_anchors(
                    num_anchor=9, hw=data.height_width)
            self.config_model['ANCH_MASK'] = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
            self.config_model[
                'N_CLASSES'] = data.c - 1  # Subtract 1 for the background class
            n_bands = kwargs.get('n_bands', None)
            self.config_model[
                'N_BANDS'] = n_bands if n_bands is not None else data.x[
                    0].data.shape[0]

        self._model = YOLOv3_Model(self.config_model)

        pretrained = kwargs.get('pretrained_backbone', True)
        if pretrained:
            # Download (if required) and load YOLOv3 weights pretrained on COCO dataset
            weights_path = os.path.join(Path.home(), '.cache', 'weights')
            if not os.path.exists(weights_path): os.makedirs(weights_path)
            weights_file = os.path.join(weights_path, 'yolov3.weights')
            if not os.path.exists(weights_file):
                try:
                    download_yolo_weights(weights_path)
                    extract_zipfile(weights_path, 'yolov3.zip', remove=True)
                except Exception as e:
                    print(e)
                    print(
                        "[INFO] Can't download and extract COCO pretrained weights for YOLOv3.\nProceeding without pretrained weights."
                    )
            if os.path.exists(weights_file):
                parse_yolo_weights(self._model, weights_file)
                from IPython.display import clear_output
                clear_output()

        self._loss_f = YOLOv3_Loss()
        self.learn = Learner(data, self._model, loss_func=self._loss_f)
        self.learn.split([self._model.module_list[11]
                          ])  #Splitting the model at Darknet53 backbone
        self.learn.freeze()

        if pretrained_path is not None:
            self.load(str(pretrained_path))

        # make first conv weights learnable and use _show_results_multispectral when using multispectral data
        self._arcgis_init_callback()

        # Set a default flag to toggle appending labels with images before passing images through the model
        self.learn.predicting = False
        self.learn.callbacks.append(AppendLabelsCallback(self.learn))

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        return '<%s>' % (type(self).__name__)

    @property
    def supported_backbones(self):
        """ Supported backbones for this model. """
        return ['DarkNet53']

    @property
    def _model_metrics(self):
        if getattr(self._data, "_is_coco", "") == True:
            return {'accuracy': {'IoU': 0.50, 'AP': 0.558}}
        return {'accuracy': self.average_precision_score(show_progress=False)}

    def _analyze_pred(self,
                      pred,
                      thresh=0.1,
                      nms_overlap=0.1,
                      ret_scores=True,
                      device=None):
        """        """
        return postprocess(pred,
                           chip_size=self.learn.data.chip_size,
                           conf_thre=thresh,
                           nms_thre=nms_overlap)

    def show_results(self, rows=5, thresh=0.1, nms_overlap=0.1):
        """
        Displays the results of a trained model on a part of the validation set.

        =====================   ===========================================
        **Argument**            **Description**
        ---------------------   -------------------------------------------
        rows                    Optional int. Number of rows of results
                                to be displayed.
        ---------------------   -------------------------------------------
        thresh                  Optional float. The probabilty above which
                                a detection will be considered valid.
        ---------------------   -------------------------------------------
        nms_overlap             Optional float. The intersection over union
                                threshold with other predicted bounding 
                                boxes, above which the box with the highest
                                score will be considered a true positive.
        =====================   ===========================================
        
        """
        self._check_requisites()

        if rows > len(self._data.valid_ds):
            rows = len(self._data.valid_ds)

        self.learn.predicting = True
        self.learn.show_results(rows=rows,
                                thresh=thresh,
                                nms_overlap=nms_overlap,
                                model=self)

    def _show_results_multispectral(self,
                                    rows=5,
                                    thresh=0.3,
                                    nms_overlap=0.1,
                                    alpha=1,
                                    **kwargs):
        self.learn.predicting = True
        ax = show_results_multispectral(self,
                                        nrows=rows,
                                        thresh=thresh,
                                        nms_overlap=nms_overlap,
                                        alpha=alpha,
                                        **kwargs)

    def predict(self,
                image_path,
                threshold=0.1,
                nms_overlap=0.1,
                return_scores=True,
                visualize=False,
                resize=False):
        """
        Predicts and displays the results of a trained model on a single image.

        =====================   ===========================================
        **Argument**            **Description**
        ---------------------   -------------------------------------------
        image_path              Required. Path to the image file to make the
                                predictions on.
        ---------------------   -------------------------------------------
        thresh                  Optional float. The probabilty above which
                                a detection will be considered valid.
        ---------------------   -------------------------------------------
        nms_overlap             Optional float. The intersection over union
                                threshold with other predicted bounding 
                                boxes, above which the box with the highest
                                score will be considered a true positive.
        ---------------------   -------------------------------------------
        return_scores           Optional boolean.
                                Will return the probability scores of the 
                                bounding box predictions if True.
        ---------------------   -------------------------------------------
        visualize               Optional boolean. Displays the image with 
                                predicted bounding boxes if True.
        ---------------------   -------------------------------------------
        resize                  Optional boolean. Resizes the image to the same size
                                (chip_size parameter in prepare_data) that the model was trained on,
                                before detecting objects.
                                Note that if resize_to parameter was used in prepare_data,
                                the image is resized to that size instead.

                                By default, this parameter is false and the detections are run
                                in a sliding window fashion by applying the model on cropped sections
                                of the image (of the same size as the model was trained on).
        =====================   ===========================================
        
        :returns: 'List' of xmin, ymin, width, height of predicted bounding boxes on the given image
        """

        if not HAS_OPENCV:
            raise Exception(
                "This function requires opencv 4.0.1.24. Install it using pip install opencv-python==4.0.1.24"
            )

        if not HAS_PIL:
            raise Exception(
                "This function requires PIL. Please install it via pip or conda"
            )

        if isinstance(image_path, str):
            image = cv2.imread(image_path)
        else:
            image = image_path

        orig_height, orig_width, _ = image.shape
        orig_frame = image.copy()

        if resize and self._data.resize_to is None\
                and self._data.chip_size is not None:
            image = cv2.resize(image,
                               (self._data.chip_size, self._data.chip_size))

        if self._data.resize_to is not None:
            if isinstance(self._data.resize_to, tuple):
                image = cv2.resize(image, self._data.resize_to)
            else:
                image = cv2.resize(
                    image, (self._data.resize_to, self._data.resize_to))

        height, width, _ = image.shape

        if self._data.chip_size is not None:
            chips = _get_image_chips(image, self._data.chip_size)
        else:
            chips = [{
                'width': width,
                'height': height,
                'xmin': 0,
                'ymin': 0,
                'chip': image,
                'predictions': []
            }]

        valid_tfms = self._data.valid_ds.tfms
        self._data.valid_ds.tfms = []

        include_pad_detections = False
        if len(chips) == 1:
            include_pad_detections = True

        for chip in chips:
            frame = Image(
                pil2tensor(PIL.Image.fromarray(
                    cv2.cvtColor(chip['chip'], cv2.COLOR_BGR2RGB)),
                           dtype=np.float32).div_(255))
            self.learn.predicting = True
            bbox = self.learn.predict(frame,
                                      thresh=threshold,
                                      nms_overlap=nms_overlap,
                                      ret_scores=True,
                                      model=self)[0]
            if bbox:
                scores = bbox.scores
                bboxes, lbls = bbox._compute_boxes()
                bboxes.add_(1).mul_(
                    torch.tensor([
                        chip['height'] / 2, chip['width'] / 2,
                        chip['height'] / 2, chip['width'] / 2
                    ])).long()
                for index, bbox in enumerate(bboxes):
                    if lbls is not None:
                        label = lbls[index]
                    else:
                        label = 'Default'

                    data = bb2hw(bbox)
                    if include_pad_detections or not _exclude_detection(
                        (data[0], data[1], data[2], data[3]), chip['width'],
                            chip['height']):
                        chip['predictions'].append({
                            'xmin':
                            data[0],
                            'ymin':
                            data[1],
                            'width':
                            data[2],
                            'height':
                            data[3],
                            'score':
                            float(scores[index]),
                            'label':
                            label
                        })

        self._data.valid_ds.tfms = valid_tfms

        predictions, labels, scores = _get_transformed_predictions(chips)

        # Scale the predictions to original image and clip the predictions to image dims
        y_ratio = orig_height / height
        x_ratio = orig_width / width
        for index, prediction in enumerate(predictions):
            prediction[0] = prediction[0] * x_ratio
            prediction[1] = prediction[1] * y_ratio
            prediction[2] = prediction[2] * x_ratio
            prediction[3] = prediction[3] * y_ratio

            # Clip xmin
            if prediction[0] < 0:
                prediction[2] = prediction[2] + prediction[0]
                prediction[0] = 1

            # Clip width when xmax greater than original width
            if prediction[0] + prediction[2] > orig_width:
                prediction[2] = (prediction[0] + prediction[2]) - orig_width

            # Clip ymin
            if prediction[1] < 0:
                prediction[3] = prediction[3] + prediction[1]
                prediction[1] = 1

            # Clip height when ymax greater than original height
            if prediction[1] + prediction[3] > orig_height:
                prediction[3] = (prediction[1] + prediction[3]) - orig_height

            predictions[index] = [
                prediction[0], prediction[1], prediction[2], prediction[3]
            ]

        if visualize:
            image = _draw_predictions(orig_frame,
                                      predictions,
                                      labels,
                                      color=(255, 0, 0),
                                      fontface=2,
                                      thickness=1)
            import matplotlib.pyplot as plt
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            if getattr(self._data, "_is_coco", "") == True:
                figsize = (20, 20)
            else:
                figsize = (4, 4)
            fig, ax = plt.subplots(1, 1, figsize=figsize)
            ax.imshow(image)

        if return_scores:
            return predictions, labels, scores
        else:
            return predictions, labels

    def predict_video(self,
                      input_video_path,
                      metadata_file,
                      threshold=0.5,
                      nms_overlap=0.1,
                      track=False,
                      visualize=False,
                      output_file_path=None,
                      multiplex=False,
                      multiplex_file_path=None,
                      tracker_options={
                          'assignment_iou_thrd': 0.3,
                          'vanish_frames': 40,
                          'detect_frames': 10
                      },
                      visual_options={
                          'show_scores': True,
                          'show_labels': True,
                          'thickness': 2,
                          'fontface': 0,
                          'color': (255, 255, 255)
                      },
                      resize=False):
        """
        Runs prediction on a video and appends the output VMTI predictions in the metadata file.

        =====================   ===========================================
        **Argument**            **Description**
        ---------------------   -------------------------------------------
        input_video_path        Required. Path to the video file to make the
                                predictions on.
        ---------------------   -------------------------------------------
        metadata_file           Required. Path to the metadata csv file where
                                the predictions will be saved in VMTI format.
        ---------------------   -------------------------------------------
        threshold               Optional float. The probability above which
                                a detection will be considered.
        ---------------------   -------------------------------------------
        nms_overlap             Optional float. The intersection over union
                                threshold with other predicted bounding
                                boxes, above which the box with the highest
                                score will be considered a true positive.
        ---------------------   -------------------------------------------
        track                   Optional bool. Set this parameter as True to
                                enable object tracking.
        ---------------------   -------------------------------------------
        visualize               Optional boolean. If True a video is saved
                                with prediction results.
        ---------------------   -------------------------------------------
        output_file_path        Optional path. Path of the final video to be saved.
                                If not supplied, video will be saved at path input_video_path
                                appended with _prediction.
        ---------------------   -------------------------------------------
        multiplex               Optional boolean. Runs Multiplex using the VMTI detections.
        ---------------------   -------------------------------------------
        multiplex_file_path     Optional path. Path of the multiplexed video to be saved.
                                By default a new file with _multiplex.MOV extension is saved
                                in the same folder.
        ---------------------   -------------------------------------------
        tracking_options        Optional dictionary. Set different parameters for
                                object tracking. assignment_iou_thrd parameter is used
                                to assign threshold for assignment of trackers,
                                vanish_frames is the number of frames the object should
                                be absent to consider it as vanished, detect_frames
                                is the number of frames an object should be detected
                                to track it.
        ---------------------   -------------------------------------------
        visual_options          Optional dictionary. Set different parameters for
                                visualization.
                                show_scores boolean, to view scores on predictions,
                                show_labels boolean, to view labels on predictions,
                                thickness integer, to set the thickness level of box,
                                fontface integer, fontface value from opencv values,
                                color tuple (B, G, R), tuple containing values between
                                0-255.
        ---------------------   -------------------------------------------
        resize                  Optional boolean. Resizes the video frames to the same size
                                (chip_size parameter in prepare_data) that the model was trained on,
                                before detecting objects.
                                Note that if resize_to parameter was used in prepare_data,
                                the video frames are resized to that size instead.

                                By default, this parameter is false and the detections are run
                                in a sliding window fashion by applying the model on cropped sections
                                of the frame (of the same size as the model was trained on).
        =====================   ===========================================
        
        """

        VideoUtils.predict_video(self, input_video_path, metadata_file,
                                 threshold, nms_overlap, track, visualize,
                                 output_file_path, multiplex,
                                 multiplex_file_path, tracker_options,
                                 visual_options, resize)

    def average_precision_score(self,
                                detect_thresh=0.5,
                                iou_thresh=0.1,
                                mean=False,
                                show_progress=True):
        """
        Computes average precision on the validation set for each class.

        =====================   ===========================================
        **Argument**            **Description**
        ---------------------   -------------------------------------------
        detect_thresh           Optional float. The probabilty above which
                                a detection will be considered for computing
                                average precision.
        ---------------------   -------------------------------------------
        iou_thresh              Optional float. The intersection over union
                                threshold with the ground truth labels, above
                                which a predicted bounding box will be
                                considered a true positive.
        ---------------------   -------------------------------------------
        mean                    Optional bool. If False returns class-wise
                                average precision otherwise returns mean
                                average precision.                        
        =====================   ===========================================
        
        :returns: `dict` if mean is False otherwise `float`
        """
        self._check_requisites()
        aps = compute_class_AP(self,
                               self._data.valid_dl,
                               self._data.c - 1,
                               show_progress,
                               detect_thresh=detect_thresh,
                               iou_thresh=iou_thresh)
        if mean:
            return statistics.mean(aps)
        else:
            return dict(zip(self._data.classes[1:], aps))

    def _get_emd_params(self):

        class_data = {}
        _emd_template = {}
        _emd_template["Framework"] = "arcgis.learn.models._inferencing"
        _emd_template["InferenceFunction"] = "ArcGISObjectDetector.py"
        _emd_template["ModelConfiguration"] = "_yolov3_inference"
        _emd_template["ModelType"] = "ObjectDetection"
        _emd_template["ExtractBands"] = [0, 1, 2]
        _emd_template['ModelParameters'] = {}
        _emd_template['ModelParameters']['anchors'] = self.config_model[
            'ANCHORS']
        _emd_template['ModelParameters']['n_bands'] = self.config_model[
            'N_BANDS']
        _emd_template['Classes'] = []

        if self._data is not None:
            for i, class_name in enumerate(
                    self._data.classes[1:]):  # 0th index is background
                inverse_class_mapping = {
                    v: k
                    for k, v in self._data.class_mapping.items()
                }
                class_data["Value"] = inverse_class_mapping[class_name]
                class_data["Name"] = class_name
                color = [random.choice(range(256)) for i in range(3)]
                class_data["Color"] = color
                _emd_template['Classes'].append(class_data.copy())

        else:
            for k, i in coco_class_mapping().items():
                class_data['Value'] = k
                class_data['Name'] = i
                color = [random.choice(range(256)) for i in range(3)]
                class_data["Color"] = color
                _emd_template['Classes'].append(class_data.copy())

        return _emd_template

    @classmethod
    def from_model(cls, emd_path, data=None):
        """
        Creates a YOLOv3 Object Detector from an Esri Model Definition (EMD) file.

        =====================   ===========================================
        **Argument**            **Description**
        ---------------------   -------------------------------------------
        emd_path                Required string. Path to Esri Model Definition
                                file.
        ---------------------   -------------------------------------------
        data                    Required fastai Databunch or None. Returned data
                                object from `prepare_data` function or None for
                                inferencing.
        =====================   ===========================================
        
        :returns: `YOLOv3` Object
        """
        if not HAS_FASTAI:
            _raise_fastai_import_error(import_exception=import_exception)

        emd_path = Path(emd_path)
        emd = json.load(open(emd_path))
        model_file = Path(emd['ModelFile'])
        chip_size = emd["ImageWidth"]

        if not model_file.is_absolute():
            model_file = emd_path.parent / model_file

        class_mapping = {i['Value']: i['Name'] for i in emd['Classes']}

        resize_to = emd.get('resize_to')
        if isinstance(resize_to, list):
            resize_to = (resize_to[0], resize_to[1])

        data_passed = True
        # Create an image databunch for when loading the model using emd (without training data)
        if data is None:
            data_passed = False
            train_tfms = []
            val_tfms = []
            ds_tfms = (train_tfms, val_tfms)

            with warnings.catch_warnings():
                warnings.simplefilter("ignore", UserWarning)

                sd = ImageList([],
                               path=emd_path.parent.parent).split_by_idx([])
                data = sd.label_const(
                    0,
                    label_cls=ObjectDetectionCategoryList,
                    classes=list(class_mapping.values())).transform(
                        ds_tfms).databunch().normalize(imagenet_stats)

            data.chip_size = chip_size
            data.class_mapping = class_mapping
            data.classes = ['background'] + list(class_mapping.values())
            data = get_multispectral_data_params_from_emd(data, emd)
            # Add 1 for background class
            data.c += 1
            data._is_empty = True
            data.emd_path = emd_path
            data.emd = emd

        data.resize_to = resize_to
        ret = cls(data, **emd['ModelParameters'], pretrained_path=model_file)

        if not data_passed:
            ret.learn.data.single_ds.classes = ret._data.classes
            ret.learn.data.single_ds.y.classes = ret._data.classes

        return ret
コード例 #28
0
        num_workers=NUM_WORKERS,
        normalization=STATISTICS,
    )

    # init model
    swa_model = MODEL(num_classes=N_CLASSES, dropout_p=DROPOUT)
    model = MODEL(num_classes=N_CLASSES, dropout_p=DROPOUT)

    # nullify all swa model parameters
    swa_params = swa_model.parameters()
    for swa_param in swa_params:
        swa_param.data = torch.zeros_like(swa_param.data)

    # average model
    n_swa = len(os.listdir(MODELS_FOLDER))
    print(f"Averaging {n_swa} models")
    for file in os.listdir(MODELS_FOLDER):
        model.load_state_dict(torch.load(f'{MODELS_FOLDER}/{file}')['model'])
        model_params = model.parameters()
        for model_param, swa_param in zip(model_params, swa_params):
            swa_param.data += model_param.data / n_swa

    # fix batch norm
    print("Fixing batch norm")
    swa_model.to(DEVICE)
    learn = Learner(data, model, model_dir=MODELS_FOLDER, loss_func=CRITERION, opt_func=OPTIMIZER, wd=WD)
    learn.model = convert_model(learn.model)
    learn.model = nn.DataParallel(learn.model).to(DEVICE)
    fix_batchnorm(learn.model, learn.data.train_dl)
    learn.save('swa_model')
コード例 #29
0
    def __init__(self, learn):
        super().__init__(learn)

    def on_epoch_end(self, **kwargs):
        for _ in train_eval_loader:
            pass


# ---
databunch = DataBunch(train_loader, val_loader)

opt_func = partial(SGD, lr=0.1, momentum=0.9, weight_decay=5e-4)

learner = Learner(data=databunch,
                  model=model,
                  opt_func=opt_func,
                  loss_func=criterion,
                  metrics=[accuracy],
                  true_wd=False)

learner.unfreeze()

# ---
callback_on_train_begin = MakeRandomizerConsistentOnTrainBegin(learner)
callback_on_epoch_end = MakeRandomizerConsistentOnEpochEnd(learner)
learner.fit(epochs=150,
            lr=0.1,
            wd=5e-4,
            callbacks=[callback_on_train_begin, callback_on_epoch_end])
learner.fit(epochs=100, lr=0.01, wd=5e-4, callbacks=[callback_on_epoch_end])
learner.fit(epochs=100, lr=0.001, wd=5e-4, callbacks=[callback_on_epoch_end])
コード例 #30
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--pregenerated_data', type=Path, required=True)
    parser.add_argument('--output_dir', type=Path, required=True)
    parser.add_argument("--bert_model", type=str, required=True,
                        choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased",
                                 "bert-base-multilingual-cased", "bert-base-chinese"])
    parser.add_argument("--do_lower_case", action="store_true")
    parser.add_argument("--reduce_memory", action="store_true",
                        help="Store training data as on-disc memmaps to massively reduce memory usage")

    parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--train_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                        "0 (default value): dynamic loss scaling.\n"
                        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=None,
                        help="random seed for initialization")
    args = parser.parse_args()

    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
            print("This script will loop over the available data, but training diversity may be negatively impacted.")
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs
    print(samples_per_epoch)

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    if args.seed:
        random.seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        if n_gpu > 0:
            torch.cuda.manual_seed_all(args.seed)

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
        logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
    args.output_dir.mkdir(parents=True, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = int(
        total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    model = torch.nn.DataParallel(model)

    # Prepare optimizer
    optimizer = BertAdam

    train_dataloader = DataLoader(
        PregeneratedData(args.pregenerated_data,  tokenizer,args.epochs, args.train_batch_size),
        batch_size=args.train_batch_size,
    )

    data = DataBunch(train_dataloader,train_dataloader)
    global_step = 0
    logging.info("***** Running training *****")
    logging.info(f"  Num examples = {total_train_examples}")
    logging.info("  Batch size = %d", args.train_batch_size)
    logging.info("  Num steps = %d", num_train_optimization_steps)
    def loss(x, y):
        return x.mean()

    learn = Learner(data, model, optimizer,
                    loss_func=loss,
                    true_wd=False,
                    path='learn',
                    layer_groups=bert_layer_list(model),
    )

    lr= args.learning_rate
    layers = len(bert_layer_list(model))
    lrs = learn.lr_range(slice(lr/(2.6**4), lr))
    for epoch in range(args.epochs):
        learn.fit_one_cycle(1, lrs, wd=0.01)
        # save model at half way point
        if epoch == args.epochs//2:
            savem = learn.model.module.bert if hasattr(learn.model, 'module') else learn.model.bert
            output_model_file = args.output_dir / (f"pytorch_fastai_model_{args.bert_model}_{epoch}.bin")
            torch.save(savem.state_dict(), str(output_model_file))
            print(f'Saved bert to {output_model_file}')

    savem = learn.model.module.bert if hasattr(learn.model, 'module') else learn.model.bert
    output_model_file = args.output_dir / (f"pytorch_fastai_model_{args.bert_model}_{args.epochs}.bin")
    torch.save(savem.state_dict(), str(output_model_file))
    print(f'Saved bert to {output_model_file}')