コード例 #1
0
def predict(learn: Learner, name: str):
    # submission.csv
    preds, _ = learn.get_preds(ds_type=DatasetType.Test)
    test['has_cactus'] = preds.numpy()[:, 0]
    test.to_csv('submission_{}.csv'.format(name), index=False)
    print('Finish creating submission_{}.csv'.format(name))
    # loss.csv
    id_ = range(len(learn.recorder.losses))
    loss_df = pd.DataFrame({
        'id': id_,
        'loss': np.array(learn.recorder.losses)
    })
    loss_df.to_csv('loss_{}.csv'.format(name), index=False)
    print('Finish creating loss_{}.csv'.format(name))
    # Calculate some metrics on the training set
    preds, targets = learn.get_preds(ds_type=DatasetType.Train)
    preds_label = np.argmax(preds.numpy(), axis=1)
    id_ = range(len(preds))
    train_pred_df = pd.DataFrame({
        'id': id_,
        'preds': preds.numpy()[:, 0],
        'preds_label': preds_label,
        'targets': targets.numpy()
    })
    train_pred_df.to_csv('./train_pred_{}.csv'.format(name))
    print('Finish creating train_pred_{}.csv'.format(name))
    correct_count = np.equal(preds_label, targets.numpy()).sum()
    len_preds = len(preds)
    incorrect_count = len_preds - correct_count
    fpr, tpr = metrics.roc_curve(preds[:, 0], targets)
    fpr, tpr = fpr.numpy(), tpr.numpy()
    FP = np.floor(fpr * len_preds)
    FN = incorrect_count - FP
    TP = np.floor(tpr * len_preds)
    TN = correct_count - TP
    id_ = range(len(fpr))
    train_index_df = pd.DataFrame({
        'id': id_,
        'fpr': fpr,
        'tpr': tpr,
        'TP': TP,
        'TN': TN,
        'FP': FP,
        'FN': FN
    })
    train_index_df.to_csv('./train_index_{}.csv'.format(name))
    print('Finish creating train_index_{}.csv'.format(name))
    # Destroy learn and save the model
    learn.export('./model_{}.pth'.format(name), destroy=True)
コード例 #2
0
def save_learner(learn: Learner,
                 with_focal_loss=False,
                 with_oversampling=False,
                 sample_size=None,
                 with_weighted_loss=False):

    postfix = _get_postfix(with_focal_loss, with_oversampling, sample_size,
                           with_weighted_loss)

    save_file_name = f'{config.PIPELINE_SAVE_FILE}{_version}{postfix}.pkl'
    save_path = config.TRAINED_MODEL_DIR / save_file_name

    learn.export(save_path)

    # fix bug in fastai, missing layer_groups
    joblib.dump(learn.layer_groups, f'{save_path}_layer_groups')