コード例 #1
0
    def _configure_loader(self, loader: Union[DataLoader, tf.data.Dataset]) -> Union[DataLoader, tf.data.Dataset]:
        """A method to configure a given dataloader for use with this Estimator's Network.

        This method will ensure that the `loader` returns the correct data type (tf.Tensor or torch.Tensor) depending on
         the requirements of the Network. It also handles issues with multi-gpu data sharding.

        Args:
            loader: A data loader to be modified.

        Returns:
            The potentially modified dataloader to be used for training.
        """
        new_loader = loader
        if isinstance(new_loader, DataLoader) and isinstance(self.network, TFNetwork):
            add_batch = True
            if hasattr(loader.dataset, "dataset") and isinstance(loader.dataset.dataset, BatchDataset):
                add_batch = False
            batch = to_tensor(loader.dataset[0], target_type="tf")
            data_type = to_type(batch)
            data_shape = to_shape(batch, add_batch=add_batch, exact_shape=False)
            new_loader = tf.data.Dataset.from_generator(lambda: loader, data_type, output_shapes=data_shape)
            new_loader = new_loader.prefetch(1)
        if isinstance(new_loader, tf.data.Dataset):
            if self.system.max_train_steps_per_epoch and self.system.mode == "train":
                new_loader = new_loader.take(self.system.max_train_steps_per_epoch)
            if self.system.max_eval_steps_per_epoch and self.system.mode == "eval":
                new_loader = new_loader.take(self.system.max_eval_steps_per_epoch)
            if isinstance(tf.distribute.get_strategy(),
                          tf.distribute.MirroredStrategy) and not isinstance(new_loader, DistributedDataset):
                new_loader = tf.distribute.get_strategy().experimental_distribute_dataset(new_loader)
        return new_loader
コード例 #2
0
ファイル: estimator.py プロジェクト: Vivek305/fastestimator
    def _configure_loader(
        self, loader: Union[DataLoader, tf.data.Dataset]
    ) -> Union[DataLoader, tf.data.Dataset]:
        """A method to configure a given dataloader for use with this Estimator's Network.

        This method will ensure that the `loader` returns the correct data type (tf.Tensor or torch.Tensor) depending on
         the requirements of the Network. It also handles issues with multi-gpu data sharding.

        Args:
            loader: A data loader to be modified.

        Returns:
            The potentially modified dataloader to be used for training.
        """
        new_loader = loader
        if isinstance(new_loader, DataLoader) and isinstance(
                self.network, TFNetwork):
            add_batch = bool(new_loader.batch_size)
            if hasattr(loader, 'fe_postprocess_fn'
                       ) and loader.fe_postprocess_fn is not None:
                # The user is manually batching data and running ops on data batches. No reliable way to shortcut this
                # since ops might require specific batch composition.
                data_instance = next(iter(loader))
                add_batch = False
            else:
                # No batch-based ops so we can try and just use the OpDataset to more quickly get our data summary
                data_instance = loader.dataset[0]
                if isinstance(data_instance, list):
                    # This is a batched dataset
                    data_instance = data_instance[0]
                    add_batch = True
                if isinstance(data_instance, FilteredData):
                    # We got unlucky and drew filtered data as the zeroth element. Fall back to a slower but more robust
                    # analysis of the batch
                    data_instance = next(iter(loader))
                    add_batch = False
            data_instance = to_tensor(data_instance, target_type="tf")
            data_type = to_type(data_instance)
            data_shape = to_shape(data_instance,
                                  add_batch=add_batch,
                                  exact_shape=False)
            new_loader = tf.data.Dataset.from_generator(
                lambda: loader, data_type, output_shapes=data_shape)
            new_loader = new_loader.prefetch(1)
        if isinstance(new_loader, tf.data.Dataset):
            if self.system.train_steps_per_epoch and self.system.mode == "train":
                new_loader = new_loader.take(self.system.train_steps_per_epoch)
            if self.system.eval_steps_per_epoch and self.system.mode == "eval":
                new_loader = new_loader.take(self.system.eval_steps_per_epoch)
            if isinstance(tf.distribute.get_strategy(),
                          tf.distribute.MirroredStrategy) and isinstance(
                              self.network, TFNetwork) and not isinstance(
                                  new_loader, DistributedDataset):
                # The default autoshard policy is file, changing it to data to avoid warning
                options = tf.data.Options()
                options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
                new_loader = new_loader.with_options(options)
                new_loader = tf.distribute.get_strategy(
                ).experimental_distribute_dataset(new_loader)
        return new_loader
コード例 #3
0
 def __init__(self, model_input: Any, model: Model):
     self.shape = to_shape(model_input)
     self.dtype = to_type(model_input)
     self.tensor_func = tf.ones if isinstance(model, tf.keras.Model) else torch.ones