コード例 #1
0
 def test_simple_input(self):
     inp = torch.ones(size=(32, 1, 28, 28), dtype=torch.float16)
     model = torch.nn.Sequential(torch.nn.Linear(28 * 28, 100))
     spec = FeInputSpec(inp, model)
     result = spec.get_dummy_input()
     self.assertIsInstance(result, torch.Tensor,
                           "Spec should return a torch tensor")
     self.assertListEqual([32, 1, 28, 28], list(result.shape),
                          "Result shape is incorrect")
     self.assertEqual(torch.float16, result.dtype,
                      "Result should be float16 dtype")
コード例 #2
0
 def test_set_input(self):
     inp = {
         torch.ones(size=(32, 3, 32, 32), dtype=torch.float64),
         torch.ones(size=(32, 10), dtype=torch.int8)
     }
     model = torch.nn.Sequential(torch.nn.Linear(28 * 28, 100))
     spec = FeInputSpec(inp, model)
     result = spec.get_dummy_input()
     self.assertIsInstance(result, set,
                           "Spec should return a set of tensors")
     self.assertEqual(2, len(result), "Spec should return two tensors")
コード例 #3
0
 def test_map_input(self):
     inp = {'inp': torch.ones(size=(32, 3, 32, 32), dtype=torch.float64)}
     model = torch.nn.Sequential(torch.nn.Linear(28 * 28, 100))
     spec = FeInputSpec(inp, model)
     result = spec.get_dummy_input()
     self.assertIsInstance(result, dict,
                           "Spec should return a tuple of tensors")
     self.assertEqual(1, len(result), "Spec should return two tensors")
     self.assertIsInstance(result['inp'], torch.Tensor,
                           "Spec should return a torch tensor")
     self.assertListEqual([32, 3, 32, 32], list(result['inp'].shape),
                          "Result shape is incorrect")
     self.assertEqual(torch.float64, result['inp'].dtype,
                      "Result dtype is incorrect")
コード例 #4
0
def _build_estimator(model: Union[tf.keras.Model, torch.nn.Module], trace: Traceability, axis: int = -1):
    train_data, eval_data = mnist.load_data()
    test_data = eval_data.split(0.5)
    batch_size = 32
    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=eval_data,
                           test_data=test_data,
                           batch_size=batch_size,
                           ops=[ExpandDims(inputs="x", outputs="x", axis=axis), Minmax(inputs="x", outputs="x")])
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
        LRScheduler(model=model, lr_fn=lambda step: cosine_decay(step, cycle_length=3750, init_lr=1e-3)),
        trace
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=1,
                             traces=traces,
                             max_train_steps_per_epoch=1,
                             max_eval_steps_per_epoch=None)
    fake_data = tf.ones(shape=(batch_size, 28, 28, 1)) if axis == -1 else torch.ones(size=(batch_size, 1, 28, 28))
    model.fe_input_spec = FeInputSpec(fake_data, model)
    return estimator
コード例 #5
0
ファイル: model.py プロジェクト: Joycesongyang/fastestimator
 def forward(self, data: Union[Tensor, List[Tensor]], state: Dict[str, Any]) -> Union[Tensor, List[Tensor]]:
     training = state['mode'] == "train" and self.trainable
     if self.epoch_spec != state['epoch']:
         # Gather model input specs for the sake of TensorBoard and Traceability
         self.model.fe_input_spec = FeInputSpec(data, self.model)
         self.epoch_spec = state['epoch']
     data = feed_forward(self.model, data, training=training)
     return data
コード例 #6
0
 def test_list_input(self):
     inp = [
         torch.ones(size=(32, 3, 32, 32), dtype=torch.float64),
         torch.ones(size=(32, 10), dtype=torch.int8)
     ]
     model = torch.nn.Sequential(torch.nn.Linear(28 * 28, 100))
     spec = FeInputSpec(inp, model)
     result = spec.get_dummy_input()
     self.assertIsInstance(result, list,
                           "Spec should return a list of tensors")
     self.assertEqual(2, len(result), "Spec should return two tensors")
     self.assertIsInstance(result[0], torch.Tensor,
                           "Spec should return a torch tensor")
     self.assertListEqual([32, 3, 32, 32], list(result[0].shape),
                          "Result shape is incorrect")
     self.assertEqual(torch.float64, result[0].dtype,
                      "Result dtype is incorrect")
     self.assertIsInstance(result[1], torch.Tensor,
                           "Spec should return a torch tensor")
     self.assertListEqual([32, 10], list(result[1].shape),
                          "Result shape is incorrect")
     self.assertEqual(torch.int8, result[1].dtype,
                      "Result dtype is incorrect")
コード例 #7
0
 def test_torch_on_batch_end(self):
     tensorboard = TensorBoard(log_dir=self.log_dir, weight_histogram_freq=1, update_freq=1)
     tensorboard.system = sample_system_object_torch()
     tensorboard.system.global_step = 1
     tensorboard.writer = _TorchWriter(self.log_dir, '', tensorboard.system.network)
     model = fe.build(model_fn=fe.architecture.pytorch.LeNet, optimizer_fn='adam', model_name='torch')
     model.fe_input_spec = FeInputSpec(self.torch_data['x'], model)
     tensorboard.system.network.epoch_models = {model}
     if os.path.exists(self.train_path):
         shutil.rmtree(self.train_path)
     tensorboard.on_batch_end(data=self.torch_data)
     filepath = getfilepath()
     for e in tf.compat.v1.train.summary_iterator(filepath):
         for v in e.summary.value:
             if v.tag == "torch_fc1/bias":
                 output = v.histo.num
                 self.assertEqual(output, 64.0)
コード例 #8
0
ファイル: model.py プロジェクト: gaurav272333/fastestimator
 def forward(self, data: Union[Tensor, List[Tensor]],
             state: Dict[str, Any]) -> Union[Tensor, List[Tensor]]:
     training = state['mode'] == "train" and self.trainable
     if isinstance(self.model,
                   torch.nn.Module) and self.epoch_spec != state['epoch']:
         # Gather model input specs for the sake of TensorBoard and Traceability
         self.model.fe_input_spec = FeInputSpec(data, self.model)
         self.epoch_spec = state['epoch']
     if self.multi_inputs:
         data = feed_forward(self.model, *data, training=training)
     else:
         data = feed_forward(self.model, data, training=training)
     intermediate_outputs = []
     for output in self.intermediate_outputs:
         intermediate_outputs.append(_unpack_output(output, self.device))
         output.clear(
         )  # This will only help with pytorch memory, tf tensors will remain until next forward
     if intermediate_outputs:
         data = to_list(data) + intermediate_outputs
     return data