コード例 #1
0
def get_estimator(data_dir=None,
                  model_dir=tempfile.mkdtemp(),
                  epochs=200,
                  batch_size_per_gpu=32,
                  train_steps_per_epoch=None,
                  eval_steps_per_epoch=None):
    num_device = get_num_devices()
    train_ds, val_ds = mscoco.load_data(root_dir=data_dir)
    train_ds = PreMosaicDataset(mscoco_ds=train_ds)
    batch_size = num_device * batch_size_per_gpu
    pipeline = fe.Pipeline(
        train_data=train_ds,
        eval_data=val_ds,
        ops=[
            ReadImage(inputs=("image1", "image2", "image3", "image4"),
                      outputs=("image1", "image2", "image3", "image4"),
                      mode="train"),
            ReadImage(inputs="image", outputs="image", mode="eval"),
            LongestMaxSize(max_size=640,
                           image_in="image1",
                           bbox_in="bbox1",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image2",
                           bbox_in="bbox2",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image3",
                           bbox_in="bbox3",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image4",
                           bbox_in="bbox4",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="train"),
            LongestMaxSize(max_size=640,
                           image_in="image",
                           bbox_in="bbox",
                           bbox_params=BboxParams("coco", min_area=1.0),
                           mode="eval"),
            PadIfNeeded(min_height=640,
                        min_width=640,
                        image_in="image",
                        bbox_in="bbox",
                        bbox_params=BboxParams("coco", min_area=1.0),
                        mode="eval",
                        border_mode=cv2.BORDER_CONSTANT,
                        value=(114, 114, 114)),
            CombineMosaic(inputs=("image1", "image2", "image3", "image4",
                                  "bbox1", "bbox2", "bbox3", "bbox4"),
                          outputs=("image", "bbox"),
                          mode="train"),
            CenterCrop(height=640,
                       width=640,
                       image_in="image",
                       bbox_in="bbox",
                       bbox_params=BboxParams("coco", min_area=1.0),
                       mode="train"),
            Sometimes(
                HorizontalFlip(image_in="image",
                               bbox_in="bbox",
                               bbox_params=BboxParams("coco", min_area=1.0),
                               mode="train")),
            HSVAugment(inputs="image", outputs="image", mode="train"),
            ToArray(inputs="bbox", outputs="bbox", dtype="float32"),
            CategoryID2ClassID(inputs="bbox", outputs="bbox"),
            GTBox(inputs="bbox",
                  outputs=("gt_sbbox", "gt_mbbox", "gt_lbbox"),
                  image_size=640),
            Delete(keys=("image1", "image2", "image3", "image4", "bbox1",
                         "bbox2", "bbox3", "bbox4", "bbox"),
                   mode="train"),
            Delete(keys="image_id", mode="eval"),
            Batch(batch_size=batch_size, pad_value=0)
        ])
    init_lr = 1e-2 / 64 * batch_size
    model = fe.build(
        lambda: YoloV5(w=640, h=640, c=3),
        optimizer_fn=lambda x: torch.optim.SGD(
            x, lr=init_lr, momentum=0.937, weight_decay=0.0005, nesterov=True),
        mixed_precision=True)
    network = fe.Network(ops=[
        RescaleTranspose(inputs="image", outputs="image"),
        ModelOp(model=model,
                inputs="image",
                outputs=("pred_s", "pred_m", "pred_l")),
        DecodePred(inputs=("pred_s", "pred_m", "pred_l"),
                   outputs=("pred_s", "pred_m", "pred_l")),
        ComputeLoss(inputs=("pred_s", "gt_sbbox"),
                    outputs=("sbbox_loss", "sconf_loss", "scls_loss")),
        ComputeLoss(inputs=("pred_m", "gt_mbbox"),
                    outputs=("mbbox_loss", "mconf_loss", "mcls_loss")),
        ComputeLoss(inputs=("pred_l", "gt_lbbox"),
                    outputs=("lbbox_loss", "lconf_loss", "lcls_loss")),
        Average(inputs=("sbbox_loss", "mbbox_loss", "lbbox_loss"),
                outputs="bbox_loss"),
        Average(inputs=("sconf_loss", "mconf_loss", "lconf_loss"),
                outputs="conf_loss"),
        Average(inputs=("scls_loss", "mcls_loss", "lcls_loss"),
                outputs="cls_loss"),
        Average(inputs=("bbox_loss", "conf_loss", "cls_loss"),
                outputs="total_loss"),
        PredictBox(width=640,
                   height=640,
                   inputs=("pred_s", "pred_m", "pred_l"),
                   outputs="box_pred",
                   mode="eval"),
        UpdateOp(model=model, loss_name="total_loss")
    ])
    traces = [
        MeanAveragePrecision(num_classes=80,
                             true_key='bbox',
                             pred_key='box_pred',
                             mode="eval"),
        BestModelSaver(model=model,
                       save_dir=model_dir,
                       metric='mAP',
                       save_best_mode="max")
    ]
    lr_schedule = {
        1:
        LRScheduler(model=model,
                    lr_fn=lambda step: lr_schedule_warmup(
                        step,
                        train_steps_epoch=np.ceil(len(train_ds) / batch_size),
                        init_lr=init_lr)),
        4:
        LRScheduler(model=model,
                    lr_fn=lambda epoch: cosine_decay(epoch,
                                                     cycle_length=epochs - 3,
                                                     init_lr=init_lr,
                                                     min_lr=init_lr / 100,
                                                     start=4))
    }
    traces.append(EpochScheduler(lr_schedule))
    estimator = fe.Estimator(
        pipeline=pipeline,
        network=network,
        epochs=epochs,
        traces=traces,
        monitor_names=["bbox_loss", "conf_loss", "cls_loss"],
        train_steps_per_epoch=train_steps_per_epoch,
        eval_steps_per_epoch=eval_steps_per_epoch)
    return estimator
コード例 #2
0
 def __init__(self, inputs, outputs, mode=None):
     super().__init__(inputs=inputs, outputs=outputs, mode=mode)
     self.num_device = get_num_devices()
コード例 #3
0
def get_estimator(epochs=150,
                  batch_size=32,
                  save_dir=tempfile.mkdtemp(),
                  train_steps_per_epoch=None,
                  eval_steps_per_epoch=None):
    # step 1: prepare dataset
    train_data, eval_data = load_data()
    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=eval_data,
                           batch_size=batch_size * get_num_devices(),
                           ops=[
                               Normalize(inputs="x",
                                         outputs="x",
                                         mean=(0.4914, 0.4822, 0.4465),
                                         std=(0.2471, 0.2435, 0.2616)),
                               PadIfNeeded(min_height=40,
                                           min_width=40,
                                           image_in="x",
                                           image_out="x",
                                           mode="train"),
                               RandomCrop(32,
                                          32,
                                          image_in="x",
                                          image_out="x",
                                          mode="train"),
                               Sometimes(
                                   HorizontalFlip(image_in="x",
                                                  image_out="x",
                                                  mode="train")),
                               CoarseDropout(inputs="x",
                                             outputs="x",
                                             mode="train",
                                             max_holes=1)
                           ])

    # step 2: prepare network
    model = fe.build(
        model_fn=lambda: pyramidnet_cifar(inputs_shape=(32, 32, 3),
                                          depth=272,
                                          alpha=200,
                                          num_classes=10,
                                          bottleneck=True),
        optimizer_fn=lambda: tfa.optimizers.SGDW(
            weight_decay=0.0001, lr=0.1, momentum=0.9))

    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce", from_logits=True),
        UpdateOp(model=model, loss_name="ce")
    ])

    # step 3 prepare estimator
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
        LRScheduler(model=model, lr_fn=lr_schedule),
        BestModelSaver(model=model,
                       save_dir=save_dir,
                       metric="accuracy",
                       save_best_mode="max")
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             train_steps_per_epoch=train_steps_per_epoch,
                             eval_steps_per_epoch=eval_steps_per_epoch)
    return estimator
コード例 #4
0
def get_estimator(target_size=128,
                  epochs=55,
                  save_dir=tempfile.mkdtemp(),
                  max_train_steps_per_epoch=None,
                  data_dir=None):
    # assert growth parameters
    num_grow = np.log2(target_size) - 2
    assert num_grow >= 1 and num_grow % 1 == 0, "need exponential of 2 and greater than 8 as target size"
    num_phases = int(2 * num_grow + 1)
    assert epochs % num_phases == 0, "epoch must be multiple of {} for size {}".format(
        num_phases, target_size)
    num_grow, phase_length = int(num_grow), int(epochs / num_phases)
    event_epoch = [1, 1 + phase_length] + [
        phase_length * (2 * i + 1) + 1 for i in range(1, num_grow)
    ]
    event_size = [4] + [2**(i + 3) for i in range(num_grow)]
    # set up data schedules
    dataset = nih_chestxray.load_data(root_dir=data_dir)
    resize_map = {
        epoch: Resize(image_in="x", image_out="x", height=size, width=size)
        for (epoch, size) in zip(event_epoch, event_size)
    }
    resize_low_res_map1 = {
        epoch: Resize(image_in="x",
                      image_out="x_low_res",
                      height=size // 2,
                      width=size // 2)
        for (epoch, size) in zip(event_epoch, event_size)
    }
    resize_low_res_map2 = {
        epoch: Resize(image_in="x_low_res",
                      image_out="x_low_res",
                      height=size,
                      width=size)
        for (epoch, size) in zip(event_epoch, event_size)
    }
    batch_size_map = {
        epoch: 512 // size * get_num_devices() if size <= 128 else 4 *
        get_num_devices()
        for (epoch, size) in zip(event_epoch, event_size)
    }
    batch_scheduler = EpochScheduler(epoch_dict=batch_size_map)
    pipeline = fe.Pipeline(
        batch_size=batch_scheduler,
        train_data=dataset,
        drop_last=True,
        ops=[
            ReadImage(inputs="x", outputs="x", color_flag='gray'),
            EpochScheduler(epoch_dict=resize_map),
            EpochScheduler(epoch_dict=resize_low_res_map1),
            EpochScheduler(epoch_dict=resize_low_res_map2),
            Normalize(inputs=["x", "x_low_res"],
                      outputs=["x", "x_low_res"],
                      mean=1.0,
                      std=1.0,
                      max_pixel_value=127.5),
            LambdaOp(fn=lambda: np.random.normal(size=[512]).astype('float32'),
                     outputs="z")
        ])
    # now model schedule
    fade_in_alpha = tf.Variable(initial_value=1.0,
                                dtype='float32',
                                trainable=False)
    d_models = fe.build(
        model_fn=lambda: build_D(fade_in_alpha,
                                 target_resolution=int(np.log2(target_size)),
                                 num_channels=1),
        optimizer_fn=[
            lambda: Adam(0.001, beta_1=0.0, beta_2=0.99, epsilon=1e-8)
        ] * len(event_size),
        model_name=["d_{}".format(size) for size in event_size])
    g_models = fe.build(
        model_fn=lambda: build_G(fade_in_alpha,
                                 target_resolution=int(np.log2(target_size)),
                                 num_channels=1),
        optimizer_fn=[
            lambda: Adam(0.001, beta_1=0.0, beta_2=0.99, epsilon=1e-8)
        ] * len(event_size) + [None],
        model_name=["g_{}".format(size) for size in event_size] + ["G"])
    fake_img_map = {
        epoch: ModelOp(inputs="z", outputs="x_fake", model=model)
        for (epoch, model) in zip(event_epoch, g_models[:-1])
    }
    fake_score_map = {
        epoch: ModelOp(inputs="x_fake", outputs="fake_score", model=model)
        for (epoch, model) in zip(event_epoch, d_models)
    }
    real_score_map = {
        epoch: ModelOp(inputs="x_blend", outputs="real_score", model=model)
        for (epoch, model) in zip(event_epoch, d_models)
    }
    interp_score_map = {
        epoch: ModelOp(inputs="x_interp", outputs="interp_score", model=model)
        for (epoch, model) in zip(event_epoch, d_models)
    }
    g_update_map = {
        epoch: UpdateOp(loss_name="gloss", model=model)
        for (epoch, model) in zip(event_epoch, g_models[:-1])
    }
    d_update_map = {
        epoch: UpdateOp(loss_name="dloss", model=model)
        for (epoch, model) in zip(event_epoch, d_models)
    }
    network = fe.Network(ops=[
        EpochScheduler(fake_img_map),
        EpochScheduler(fake_score_map),
        ImageBlender(
            alpha=fade_in_alpha, inputs=("x", "x_low_res"), outputs="x_blend"),
        EpochScheduler(real_score_map),
        Interpolate(inputs=("x_fake", "x"), outputs="x_interp"),
        EpochScheduler(interp_score_map),
        GradientPenalty(inputs=("x_interp", "interp_score"), outputs="gp"),
        GLoss(inputs="fake_score", outputs="gloss"),
        DLoss(inputs=("real_score", "fake_score", "gp"), outputs="dloss"),
        EpochScheduler(g_update_map),
        EpochScheduler(d_update_map)
    ])
    traces = [
        AlphaController(alpha=fade_in_alpha,
                        fade_start_epochs=event_epoch[1:],
                        duration=phase_length,
                        batch_scheduler=batch_scheduler,
                        num_examples=len(dataset)),
        ModelSaver(model=g_models[-1],
                   save_dir=save_dir,
                   frequency=phase_length),
        ImageSaving(epoch_model_map={
            epoch - 1: model
            for (epoch,
                 model) in zip(event_epoch[1:] + [epochs + 1], g_models[:-1])
        },
                    save_dir=save_dir)
    ]
    estimator = fe.Estimator(
        pipeline=pipeline,
        network=network,
        epochs=epochs,
        traces=traces,
        max_train_steps_per_epoch=max_train_steps_per_epoch)
    return estimator
コード例 #5
0
def get_estimator(data_dir=None,
                  epochs=12,
                  batch_size_per_gpu=4,
                  im_size=1344,
                  model_dir=tempfile.mkdtemp(),
                  train_steps_per_epoch=None,
                  eval_steps_per_epoch=None):
    assert im_size % 32 == 0, "im_size must be a multiple of 32"
    num_device = get_num_devices()
    train_ds, val_ds = mscoco.load_data(root_dir=data_dir, load_masks=True)
    batch_size = num_device * batch_size_per_gpu
    pipeline = fe.Pipeline(
        train_data=train_ds,
        eval_data=val_ds,
        test_data=val_ds,
        ops=[
            ReadImage(inputs="image", outputs="image"),
            MergeMask(inputs="mask", outputs="mask"),
            GetImageSize(inputs="image", outputs="imsize", mode="test"),
            LongestMaxSize(max_size=im_size,
                           image_in="image",
                           mask_in="mask",
                           bbox_in="bbox",
                           bbox_params="coco"),
            RemoveIf(fn=lambda x: len(x) == 0, inputs="bbox"),
            PadIfNeeded(min_height=im_size,
                        min_width=im_size,
                        image_in="image",
                        mask_in="mask",
                        bbox_in="bbox",
                        bbox_params="coco",
                        border_mode=cv2.BORDER_CONSTANT,
                        value=0),
            Sometimes(
                HorizontalFlip(image_in="image",
                               mask_in="mask",
                               bbox_in="bbox",
                               bbox_params="coco",
                               mode="train")),
            Resize(height=im_size // 4, width=im_size // 4,
                   image_in='mask'),  # downscale mask for memory efficiency
            Gt2Target(inputs=("mask", "bbox"),
                      outputs=("gt_match", "mask", "classes")),
            Delete(keys="bbox"),
            Delete(keys="image_id", mode="!test"),
            Batch(batch_size=batch_size, pad_value=0)
        ],
        num_process=8 * num_device)
    init_lr = 1e-2 / 16 * batch_size
    model = fe.build(
        model_fn=SoloV2,
        optimizer_fn=lambda x: torch.optim.SGD(x, lr=init_lr, momentum=0.9))
    network = fe.Network(ops=[
        Normalize(inputs="image",
                  outputs="image",
                  mean=(0.485, 0.456, 0.406),
                  std=(0.229, 0.224, 0.225)),
        Permute(inputs="image", outputs='image'),
        ModelOp(model=model,
                inputs="image",
                outputs=("feat_seg", "feat_cls_list", "feat_kernel_list")),
        LambdaOp(fn=lambda x: x,
                 inputs="feat_cls_list",
                 outputs=("cls1", "cls2", "cls3", "cls4", "cls5")),
        LambdaOp(fn=lambda x: x,
                 inputs="feat_kernel_list",
                 outputs=("k1", "k2", "k3", "k4", "k5")),
        Solov2Loss(0,
                   40,
                   inputs=("mask", "classes", "gt_match", "feat_seg", "cls1",
                           "k1"),
                   outputs=("l_c1", "l_s1")),
        Solov2Loss(1,
                   36,
                   inputs=("mask", "classes", "gt_match", "feat_seg", "cls2",
                           "k2"),
                   outputs=("l_c2", "l_s2")),
        Solov2Loss(2,
                   24,
                   inputs=("mask", "classes", "gt_match", "feat_seg", "cls3",
                           "k3"),
                   outputs=("l_c3", "l_s3")),
        Solov2Loss(3,
                   16,
                   inputs=("mask", "classes", "gt_match", "feat_seg", "cls4",
                           "k4"),
                   outputs=("l_c4", "l_s4")),
        Solov2Loss(4,
                   12,
                   inputs=("mask", "classes", "gt_match", "feat_seg", "cls5",
                           "k5"),
                   outputs=("l_c5", "l_s5")),
        CombineLoss(inputs=("l_c1", "l_s1", "l_c2", "l_s2", "l_c3", "l_s3",
                            "l_c4", "l_s4", "l_c5", "l_s5"),
                    outputs=("total_loss", "cls_loss", "seg_loss")),
        L2Regularizaton(inputs="total_loss",
                        outputs="total_loss_l2",
                        model=model,
                        beta=1e-5,
                        mode="train"),
        UpdateOp(model=model, loss_name="total_loss_l2"),
        PointsNMS(inputs="feat_cls_list", outputs="feat_cls_list",
                  mode="test"),
        Predict(inputs=("feat_seg", "feat_cls_list", "feat_kernel_list"),
                outputs=("seg_preds", "cate_scores", "cate_labels"),
                mode="test")
    ])
    train_steps_epoch = int(np.ceil(len(train_ds) / batch_size))
    lr_schedule = {
        1:
        LRScheduler(
            model=model,
            lr_fn=lambda step: lr_schedule_warmup(step, init_lr=init_lr)),
        2:
        LRScheduler(
            model=model,
            lr_fn=lambda step: cosine_decay(step,
                                            cycle_length=train_steps_epoch *
                                            (epochs - 1),
                                            init_lr=init_lr,
                                            min_lr=init_lr / 100,
                                            start=train_steps_epoch))
    }
    traces = [
        EpochScheduler(lr_schedule),
        COCOMaskmAP(data_dir=val_ds.root_dir,
                    inputs=("seg_preds", "cate_scores", "cate_labels",
                            "image_id", "imsize"),
                    mode="test"),
        BestModelSaver(model=model, save_dir=model_dir, metric="total_loss")
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             monitor_names=("cls_loss", "seg_loss"),
                             train_steps_per_epoch=train_steps_per_epoch,
                             eval_steps_per_epoch=eval_steps_per_epoch)
    return estimator