コード例 #1
0
ファイル: cgp2d.py プロジェクト: stuarteberg/nifty
def watersheds(raw, sigma):
    edgeIndicator = ffilt.hessianOfGaussianEigenvalues(raw, sigma)[:,:,0]
    seg, nseg = vigra.analysis.watersheds(edgeIndicator)
    #seg -= 1
    #vigra.segShow(raw, seg)
    #vigra.show()
    return seg,nseg
コード例 #2
0
ファイル: real_test_cgp2d.py プロジェクト: cj401/nifty
def watersheds(raw, sigma):
    edgeIndicator = ffilt.hessianOfGaussianEigenvalues(raw, sigma)[:, :, 0]
    seg, nseg = vigra.analysis.watersheds(edgeIndicator)
    #seg -= 1
    #vigra.segShow(raw, seg)
    #vigra.show()
    return seg, nseg
コード例 #3
0
def em_hmap(raw, sigma, sigma2=None, invert=True):
    """ This heightmap works well for 2d boundaries in EM.
    """
    hmap = normalize_input(ff.gaussianGradientMagnitude(raw, sigma))
    sigma2 = sigma if sigma2 is None else sigma2
    hmap = ff.hessianOfGaussianEigenvalues(hmap, sigma2)[..., 0]
    hmap = update_hmap(raw, hmap, invert=invert)
    return hmap
コード例 #4
0
ファイル: filters.py プロジェクト: cj401/nifty
    def __call__(self, raw):
        f = fastfilters.hessianOfGaussianEigenvalues(raw, self.sigma)
        for c in range(3):

            fc = f[:, :, :, c]
            fc -= self.mi[c]
            fc /= (self.ma[c] - self.mi[c])

        return f
コード例 #5
0
ファイル: filters.py プロジェクト: cj401/nifty
    def __init__(self, raw, sigma):
        self.sigma = sigma
        f = fastfilters.hessianOfGaussianEigenvalues(raw, self.sigma)
        self.mi = [numpy.min(f[:, :, :, c]) for c in range(3)]
        self.ma = [numpy.max(f[:, :, :, c]) for c in range(3)]
        self.range = [(ma - mi) / tolFactor
                      for ma, mi in zip(self.ma, self.mi)]

        for c in range(3):
            self.mi[c] -= self.range[c]
            self.ma[c] += self.range[c]
コード例 #6
0
def test_vigra_compare():
    a = np.random.randn(1000000).reshape(1000,1000).astype(np.float32)[:,:900]
    a = np.ascontiguousarray(a)

    sigmas = [1.0, 5.0, 10.0]

    for order in [0,1,2]:
        for sigma in sigmas:
            res_ff = ff.gaussianDerivative(a, sigma, order, window_size=3.5)
            res_vigra = vigra.filters.gaussianDerivative(a, sigma, [order,order], window_size=3.5)

            print("gaussian ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

            if not np.allclose(res_ff, res_vigra, atol=1e-6):
                raise Exception("FAIL: ", order, sigma, np.max(np.abs(res_ff - res_vigra)))


    for sigma in sigmas:
        res_ff = ff.hessianOfGaussianEigenvalues(a, sigma, window_size=3.5)
        res_vigra = vigra.filters.hessianOfGaussianEigenvalues(a, sigma, window_size=3.5)
        print("HOG", sigma, np.max(np.abs(res_ff - res_vigra)))

        if not np.allclose(res_ff, res_vigra, atol=1e-6) or np.any(np.isnan(np.abs(res_ff - res_vigra))):
            raise Exception("FAIL: HOG", sigma, np.max(np.abs(res_ff - res_vigra)))


    for sigma in sigmas:
        res_ff = ff.gaussianGradientMagnitude(a, sigma, window_size=3.5)
        res_vigra = vigra.filters.gaussianGradientMagnitude(a, sigma, window_size=3.5)
        print("gradmag2d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            raise Exception("FAIL: gradmag2d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))


    for sigma in sigmas:
        res_ff = ff.laplacianOfGaussian(a, sigma, window_size=3.5)
        res_vigra = vigra.filters.laplacianOfGaussian(a, sigma, window_size=3.5)
        print("laplacian2d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            raise Exception("FAIL: laplacian2d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))


    for sigma in sigmas:
        for sigma2 in sigmas:
            res_ff = ff.structureTensorEigenvalues(a, sigma2, sigma, window_size=3.5)
            res_vigra = vigra.filters.structureTensorEigenvalues(a, sigma, sigma2, window_size=3.5)
            print("ST", sigma, sigma2, np.max(np.abs(res_ff - res_vigra)))

            if not np.allclose(res_ff, res_vigra, atol=1e-6) or np.any(np.isnan(np.abs(res_ff - res_vigra))):
                raise Exception("FAIL: ST", sigma, sigma2, np.max(np.abs(res_ff - res_vigra)))
コード例 #7
0
    def test_parallel_filter_channel(self):
        from ilastik.workflows.carving.carvingTools  import parallel_filter
        name = 'hessianOfGaussianEigenvalues'
        shape = 3 * (128,)
        x = numpy.random.rand(*shape).astype('float32')

        sigma = 1.6
        exp = fastfilters.hessianOfGaussianEigenvalues(x, sigma)

        for channel in range(3):
            res = parallel_filter(name, x, sigma,
                                  max_workers=4, return_channel=channel)
            assert numpy.allclose(res, exp[..., channel])
コード例 #8
0
def test_vigra_compare3d():
    a = np.random.randn(1000000).reshape(100,100,100).astype(np.float32)[:,:90,:80]
    a = np.ascontiguousarray(a)

    sigmas = [1.0, 5.0, 10.0]

    for order in [0,1,2]:
        for sigma in sigmas:
            res_ff = ff.gaussianDerivative(a, sigma, order)
            res_vigra = vigra.filters.gaussianDerivative(a, sigma, [order,order,order])

            print("gaussian ", order, sigma, np.max(np.abs(res_ff - res_vigra)), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra))

            if not np.allclose(res_ff, res_vigra, atol=1e-6):
                raise Exception("FAIL: ", order, sigma, np.max(np.abs(res_ff - res_vigra)))


    for sigma in sigmas:
        res_ff = ff.gaussianGradientMagnitude(a, sigma)
        res_vigra = vigra.filters.gaussianGradientMagnitude(a, sigma)
        print("gradmag3d ", order, sigma, np.max(np.abs(res_ff - res_vigra)), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            raise Exception("FAIL: gradmag3d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

    for sigma in sigmas:
        res_ff = ff.laplacianOfGaussian(a, sigma)
        res_vigra = vigra.filters.laplacianOfGaussian(a, sigma)
        print("laplacian3d ", order, sigma, np.max(np.abs(res_ff - res_vigra)), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            raise Exception("FAIL: laplacian3d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

    for sigma in sigmas:
        res_ff = ff.hessianOfGaussianEigenvalues(a, sigma)
        res_vigra = vigra.filters.hessianOfGaussianEigenvalues(a, sigma)
        print("HOG", sigma, np.max(np.abs(res_ff - res_vigra)), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra))

        if np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra) > 1e-6 or np.any(np.isnan(np.abs(res_ff - res_vigra))):
            raise Exception("FAIL: HOG", sigma, np.max(np.abs(res_ff - res_vigra)), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra))

    for sigma in sigmas:
        for sigma2 in sigmas:
            res_ff = ff.structureTensorEigenvalues(a, sigma2, sigma)
            res_vigra = vigra.filters.structureTensorEigenvalues(a, sigma, sigma2)
            print("ST", sigma, sigma2, np.max(np.abs(res_ff - res_vigra)), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra))

            if np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra) > 1e-5 or np.any(np.isnan(np.abs(res_ff - res_vigra))):
                raise Exception("FAIL: ST", sigma, sigma2, np.max(np.abs(res_ff - res_vigra)), np.sum(np.abs(res_ff-res_vigra))/np.size(res_vigra))
コード例 #9
0
    def __call__(self, dataIn, slicing, featureArray):
        fIndex = 0
        dataIn = numpy.require(dataIn,'float32').squeeze()

        dataWithChannel = extractChannels(dataIn, self.usedChannels)

        slicingEv = slicing + [slice(0,2)]

        for c in range(dataWithChannel.shape[2]):

            data = dataWithChannel[:,:,c]

            # pre-smoothed
            sigmaPre = self.sigmas[0]/2.0
            preS = fastfilters.gaussianSmoothing(data, sigmaPre)

            for sigma in self.sigmas:

                neededScale = getScale(target=sigma, presmoothed=sigmaPre)
                preS = fastfilters.gaussianSmoothing(preS, neededScale)
                sigmaPre = sigma

                featureArray[:,:,fIndex] = preS[slicing]
                fIndex += 1

                featureArray[:,:,fIndex] = fastfilters.laplacianOfGaussian(preS, neededScale)[slicing]
                fIndex += 1

                featureArray[:,:,fIndex] = fastfilters.gaussianGradientMagnitude(preS, neededScale)[slicing]
                fIndex += 1


                featureArray[:,:,fIndex:fIndex+2] = fastfilters.hessianOfGaussianEigenvalues(preS, neededScale)[slicingEv]
                fIndex += 2

                
                #print("array shape",featureArray[:,:,:,fIndex:fIndex+3].shape)
                feat = fastfilters.structureTensorEigenvalues(preS, float(sigma)*0.3, float(sigma)*0.7)[slicingEv]
                #print("feat  shape",feat.shape)
                featureArray[:,:,fIndex:fIndex+2] = feat
                fIndex += 2

        assert fIndex == self.n_features
コード例 #10
0
sigmas = [1.0, 5.0, 10.0]

for order in [0,1,2]:
	for sigma in sigmas:
		res_ff = ff.gaussian2d(a, order, sigma)
		res_vigra = vigra.filters.gaussianDerivative(a, sigma, [order,order])

		print("gaussian ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

		if not np.allclose(res_ff, res_vigra, atol=1e-6):
			raise Exception("FAIL: ", order, sigma, np.max(np.abs(res_ff - res_vigra)))


for sigma in sigmas:
	res_ff = ff.hessianOfGaussianEigenvalues(a, sigma)
	res_vigra = vigra.filters.hessianOfGaussianEigenvalues(a, sigma)
	print("HOG", sigma, np.max(np.abs(res_ff - res_vigra)))

	if not np.allclose(res_ff, res_vigra, atol=1e-6) or np.any(np.isnan(np.abs(res_ff - res_vigra))):
		raise Exception("FAIL: HOG", sigma, np.max(np.abs(res_ff - res_vigra)))


for sigma in sigmas:
	res_ff = ff.gaussianGradientMagnitude(a, sigma)
	res_vigra = vigra.filters.gaussianGradientMagnitude(a, sigma)
	print("gradmag2d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

	if not np.allclose(res_ff, res_vigra, atol=1e-6):
		raise Exception("FAIL: gradmag2d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))
コード例 #11
0
 def filter_fn(self, source_raw: numpy.ndarray) -> numpy.ndarray:
     return fastfilters.hessianOfGaussianEigenvalues(
         source_raw, scale=self.scale, window_size=self.window_size)
コード例 #12
0
 def filter_fn(
     self, source_raw: "ndarray[Any, dtype[float32]]"
 ) -> "ndarray[Any, dtype[float32]]":
     return fastfilters.hessianOfGaussianEigenvalues(
         source_raw, scale=self.scale, window_size=self.window_size)
コード例 #13
0
sigmas = [1.0, 5.0, 10.0]

for order in [0, 1, 2]:
    for sigma in sigmas:
        res_ff = ff.gaussian2d(a, order, sigma)
        res_vigra = vigra.filters.gaussianDerivative(a, sigma, [order, order])

        print("gaussian ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            raise Exception("FAIL: ", order, sigma,
                            np.max(np.abs(res_ff - res_vigra)))

for sigma in sigmas:
    res_ff = ff.hessianOfGaussianEigenvalues(a, sigma)
    res_vigra = vigra.filters.hessianOfGaussianEigenvalues(a, sigma)
    print("HOG", sigma, np.max(np.abs(res_ff - res_vigra)))

    if not np.allclose(res_ff, res_vigra, atol=1e-6) or np.any(
            np.isnan(np.abs(res_ff - res_vigra))):
        raise Exception("FAIL: HOG", sigma, np.max(np.abs(res_ff - res_vigra)))

for sigma in sigmas:
    res_ff = ff.gaussianGradientMagnitude(a, sigma)
    res_vigra = vigra.filters.gaussianGradientMagnitude(a, sigma)
    print("gradmag2d ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

    if not np.allclose(res_ff, res_vigra, atol=1e-6):
        raise Exception("FAIL: gradmag2d ", order, sigma,
                        np.max(np.abs(res_ff - res_vigra)))