コード例 #1
0
ファイル: run_fj.py プロジェクト: roylemmon/pyjetty
def fj_example_02_area(event):
    # cluster the event
    jet_def = fj.JetDefinition(fj.antikt_algorithm, 0.4)
    area_def = fj.AreaDefinition(fj.active_area, fj.GhostedAreaSpec(5.0))
    cs = fj.ClusterSequenceArea(event, jet_def, area_def)
    jets = fj.SelectorPtMin(5.0)(fj.sorted_by_pt(cs.inclusive_jets()))
    print("jet def:", jet_def)
    print("area def:", area_def)
    print("#-------------------- initial jets --------------------")
    print_jets(jets)
    #----------------------------------------------------------------------
    # estimate the background
    maxrap = 4.0
    grid_spacing = 0.55
    gmbge = fj.GridMedianBackgroundEstimator(maxrap, grid_spacing)
    gmbge.set_particles(event)
    print("#-------------------- background properties --------------------")
    print("rho   = ", gmbge.rho())
    print("sigma = ", gmbge.sigma())
    print()
    #----------------------------------------------------------------------
    # subtract the jets
    subtractor = fj.Subtractor(gmbge)
    subtracted_jets = subtractor(jets)
    print("#-------------------- subtracted jets --------------------")
    print_jets(subtracted_jets)
コード例 #2
0
 def analyze_event(self, parts):
     self.particles = self.particle_selector(parts)
     if len(self.particles) < 1:
         self.cs = None
         self.jets = []
     else:
         self.cs = fj.ClusterSequenceArea(self.particles, self.jet_def,
                                          self.jet_area_def)
         self.jets = fj.sorted_by_pt(
             self.jet_selector(self.cs.inclusive_jets()))
コード例 #3
0
	def analyze_event(self, parts):
		if len(parts) < 1:
			self.rho = 0.0
			self.cs = None
			self.jets = []
			self.corr_jet_pt = []
		else:
			self.bg_estimator.set_particles(parts)
			self.rho = self.bg_estimator.rho()
			self.cs = fj.ClusterSequenceArea(parts, self.jet_def, self.jet_area_def)
			self.jets = fj.sorted_by_pt(self.jet_selector(self.cs.inclusive_jets()))
			self.corr_jet_pt = [j.pt() - j.area() * self.rho for j in self.jets]
コード例 #4
0
def do_cs_jet_by_jet(full_event, ptmin=100.):
    # clustering with ghosts and get the jets
    jet_def = fj.JetDefinition(fj.antikt_algorithm, 0.4)
    ghost_RapMax = 3.
    ghost_spec = fj.GhostedAreaSpec(ghost_RapMax, 1, ghost_area)
    area_def = fj.AreaDefinition(fj.active_area_explicit_ghosts, ghost_spec)
    clust_seq_full = fj.ClusterSequenceArea(full_event, jet_def, area_def)
    full_jets = clust_seq_full.inclusive_jets(ptmin)

    # background estimation
    jet_def_bge = fj.JetDefinition(fj.kt_algorithm, 0.4)
    area_def_bge = fj.AreaDefinition(fj.active_area_explicit_ghosts,
                                     ghost_spec)

    bge_range = fj.SelectorAbsRapMax(3.0)
    bge = fj.JetMedianBackgroundEstimator(bge_range, jet_def_bge, area_def_bge)
    bge.set_particles(full_event)

    # subtractor
    subtractor = cs.ConstituentSubtractor()
    subtractor.set_distance_type(0)
    subtractor.set_max_distance(max_distance)
    subtractor.set_alpha(alpha)
    subtractor.set_max_eta(3.0)
    subtractor.set_background_estimator(bge)
    subtractor.set_common_bge_for_rho_and_rhom()

    #sel_max_pt = fj.SelectorPtMax(10)
    #subtractor.set_particle_selector(sel_max_pt)

    # do subtraction
    corrected_jets = cs.PseudoJetVec()
    for jet in full_jets:
        subtracted_jet = subtractor.result(jet)
        corrected_jets.push_back(subtracted_jet)

    # pt cut
    selector = fj.SelectorPtMin(ptmin)
    return selector(corrected_jets), clust_seq_full
コード例 #5
0
    def process_event(self, event):
        # assume this is done already (when creating the ntuples):
        # self.fj_particles_selected = self.particle_selector(fj_particles)
        if self.constit_subtractor:
            self.fj_particles_selected = self.constit_subtractor.process_event(
                event.particles)
        else:
            self.fj_particles_selected = event.particles
        self.cs = fj.ClusterSequenceArea(self.fj_particles_selected,
                                         self.jet_def, self.jet_area_def)
        # self.cs = fj.ClusterSequence(self.fj_particles_selected, self.jet_def)
        self.jets = fj.sorted_by_pt(self.cs.inclusive_jets())
        self.rho = 0
        if self.bg_estimator:
            self.bg_estimator.set_particles(self.fj_particles_selected)
            self.rho = self.bg_estimator.rho()
        if self.jets[0].pt(
        ) - self.rho * self.jets[0].area() < self.jet_pt_min:
            return False
        self.jets_selected = self.jet_selector(self.jets)
        # remove jets containing bad (high pT) particles
        self.jets_detok = list(
            filter(
                lambda j: max([t.pt() for t in j.constituents()]) < self.
                particle_pt_max, self.jets_selected))
        # print(len(self.jets_selected), len(self.jets_detok))
        self.sd_jets = []
        self.sd_jets_info = []
        for isd, sd in enumerate(self.sds):
            self.sd_jets.append([])
            self.sd_jets_info.append([])
        for j in self.jets_detok:
            for isd, sd in enumerate(self.sds):
                jet_sd = sd.result(j)
                self.sd_jets[isd].append(jet_sd)
                self.sd_jets_info[isd].append(
                    fjcontrib.get_SD_jet_info(jet_sd))

        if self.event_output:
            self.event_output.fill_branch('ev_id', event.ev_id)
            self.event_output.fill_branch('run_number', event.run_number)
            self.event_output.fill_branch('rho', self.rho)
            self.event_output.fill_tree()

        if self.jet_output:
            self.jet_output.fill_branch('ev_id', event.ev_id)
            self.jet_output.fill_branch('run_number', event.run_number)
            self.jet_output.fill_branch('rho', self.rho)
            self.jet_output.fill_branch('jet', [j for j in self.jets_detok])
            self.jet_output.fill_branch(
                'jet_ptsub',
                [j.pt() - (self.rho * j.area()) for j in self.jets_detok])
            for isd, sd in enumerate(self.sds):
                bname = 'jet_sd{}pt'.format(self.sd_betas[isd])
                self.jet_output.fill_branch(
                    bname, [j.pt() for j in self.sd_jets[isd]])
                bname = 'jet_sd{}zg'.format(self.sd_betas[isd])
                self.jet_output.fill_branch(
                    bname, [j.z for j in self.sd_jets_info[isd]])
                bname = 'jet_sd{}Rg'.format(self.sd_betas[isd])
                self.jet_output.fill_branch(
                    bname, [j.dR for j in self.sd_jets_info[isd]])
                bname = 'jet_sd{}thetag'.format(self.sd_betas[isd])
                self.jet_output.fill_branch(
                    bname, [j.dR / self.jet_R for j in self.sd_jets_info[isd]])
            self.jet_output.fill_tree()
        return True
コード例 #6
0
def run(data, n_events = 1000000):
    
    out = []
    njets = []
    met = []
    rho = []
    jets_corr = []
    area = []

    # run jet clustering with AntiKt, R=1.0
    R = 1.0
    jet_def = fj.JetDefinition(fj.antikt_algorithm, R)

    # Area Definition
    ghost_maxrap = 4.7
    area_def = fj.AreaDefinition(fj.active_area, fj.GhostedAreaSpec(ghost_maxrap))

    # Background estimator
    select_rapidity = fj.SelectorAbsRapMax(ghost_maxrap)
    bge = fj.JetMedianBackgroundEstimator(select_rapidity, jet_def, area_def)

    # Loop over events
    for ievt in range(n_events):

        # Build a list of all particles and MET Information
        pjs = []
        pjmet = fj.PseudoJet()
        pjmets = fj.PseudoJet()

        for i in range(int(data.shape[1]/3)):

            pj = fj.PseudoJet()
            pj.reset_PtYPhiM(data.at[ievt, 3*i+0], data.at[ievt, 3*i+1], data.at[ievt, 3*i+2], 0)
            if pj.pt() > 1.0:
                pjs.append(pj)

            pjmet.reset_momentum(-pj.px(), -pj.py(), 0, pj.E())
            pjmets = pjmets + pjmet

        met.append(pjmets)

        # Cluster sequence
        clust_seq = fj.ClusterSequenceArea(pjs, jet_def, area_def)
        jets = fj.sorted_by_pt(clust_seq.inclusive_jets())
        jets = [j for j in jets if j.pt() > 30. and j.eta() < 4.7]
        area.append([jets[0].area(), jets[1].area()])

        # Save the two leading jets and njets
        jets_sel = (fj.SelectorNHardest(2))(jets)
        out.append(jets_sel)
        njets.append(len(jets))

        # Background estimator
        bge.set_particles(pjs)
        rho.append(bge.rho())

        # Correct Jets
        sub = fj.Subtractor(bge)
        sub_jets = sub(jets_sel)
        jets_corr.append(sub_jets)

    return out, area, met, njets, rho, jets_corr
コード例 #7
0
ファイル: run_fj.py プロジェクト: roylemmon/pyjetty
def main(args):
    fname = args.fname
    file = uproot.open(fname)
    all_ttrees = dict(
        file.allitems(
            filterclass=lambda cls: issubclass(cls, uproot.tree.TTreeMethods)))
    tracks = all_ttrees[b'PWGHF_TreeCreator/tree_Particle;1']
    pds_trks = tracks.pandas.df()  # entrystop=10)
    events = all_ttrees[b'PWGHF_TreeCreator/tree_event_char;1']
    pds_evs = events.pandas.df()

    # print the banner first
    fj.ClusterSequence.print_banner()

    # signal jet definition
    maxrap = 0.9
    jet_R0 = args.jetR
    jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
    jet_selector = fj.SelectorPtMin(0.0) & fj.SelectorAbsEtaMax(1)
    jet_area_def = fj.AreaDefinition(fj.active_area,
                                     fj.GhostedAreaSpec(maxrap))
    print(jet_def)

    # background estimation
    grid_spacing = maxrap / 10.
    gmbge = fj.GridMedianBackgroundEstimator(maxrap, grid_spacing)

    print()

    output_columns = ['evid', 'pt', 'eta', 'phi', 'area', 'ptsub']
    e_jets = pd.DataFrame(columns=output_columns)

    for i, e in pds_evs.iterrows():
        iev_id = int(e['ev_id'])
        run_number = int(e['run_number'])
        _ts = pds_trks.loc[pds_trks['ev_id'] == iev_id].loc[
            pds_trks['run_number'] == run_number]
        _tpsj = fjext.vectorize_pt_eta_phi(_ts['ParticlePt'].values,
                                           _ts['ParticleEta'].values,
                                           _ts['ParticlePhi'].values)
        # print('maximum particle rapidity:', max([psj.rap() for psj in _tpsj]))
        _cs = fj.ClusterSequenceArea(_tpsj, jet_def, jet_area_def)
        _jets = jet_selector(fj.sorted_by_pt(_cs.inclusive_jets()))
        gmbge.set_particles(_tpsj)
        # print("rho   = ", gmbge.rho(), "sigma = ", gmbge.sigma())
        _jets_df = pd.DataFrame([[
            iev_id,
            j.perp(),
            j.eta(),
            j.phi(),
            j.area(),
            j.perp() - gmbge.rho() * j.area()
        ] for j in _jets],
                                columns=output_columns)
        e_jets = e_jets.append(_jets_df, ignore_index=True)
        # print('event', i, 'number of parts', len(_tpsj), 'number of jets', len(_jets))
        # print(_jets_df.describe())
        if args.fjsubtract:
            fj_example_02_area(_tpsj)

    # print(e_jets.describe())
    joblib.dump(e_jets, args.output)
コード例 #8
0
ファイル: run_fj_speedtest.py プロジェクト: roylemmon/pyjetty
def main(args):
    fname = args.fname
    file = uproot.open(fname)
    all_ttrees = dict(
        file.allitems(
            filterclass=lambda cls: issubclass(cls, uproot.tree.TTreeMethods)))
    tracks = all_ttrees[b'PWGHF_TreeCreator/tree_Particle;1']
    pds_trks = tracks.pandas.df()  # entrystop=10)
    events = all_ttrees[b'PWGHF_TreeCreator/tree_event_char;1']
    pds_evs = events.pandas.df()

    # print the banner first
    fj.ClusterSequence.print_banner()

    # signal jet definition
    maxrap = 0.9
    jet_R0 = args.jetR
    jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
    jet_selector = fj.SelectorPtMin(0.0) & fj.SelectorPtMax(
        1000.0) & fj.SelectorAbsEtaMax(1)
    jet_area_def = fj.AreaDefinition(fj.active_area,
                                     fj.GhostedAreaSpec(maxrap))
    print(jet_def)

    # background estimation
    grid_spacing = maxrap / 10.
    gmbge = fj.GridMedianBackgroundEstimator(maxrap, grid_spacing)

    print()

    output_columns = ['evid', 'pt', 'eta', 'phi', 'area', 'ptsub']
    e_jets = pd.DataFrame(columns=output_columns)

    for i, e in pds_evs.iterrows():
        iev_id = int(e['ev_id'])
        _ts = pds_trks.loc[pds_trks['ev_id'] == iev_id]

        start = time.time()
        _tpsj = fj_parts_from_tracks_numpy(_ts)
        end = time.time()
        dt_swig = end - start

        start = time.time()
        _tpsj_for = fj_parts_from_tracks(_ts)
        end = time.time()
        dt_for = end - start

        # print ('len {} =?= {}'.format(len(_tpsj_for), len(_tpsj)))
        print(
            '[i] timing (ntracks={}): dt_for: {} dt_swig: {} ratio: {}'.format(
                len(_tpsj), dt_for, dt_swig, dt_for / dt_swig))

        # print('maximum particle rapidity:', max([psj.rap() for psj in _tpsj]))
        _cs = fj.ClusterSequenceArea(_tpsj, jet_def, jet_area_def)
        _jets = jet_selector(fj.sorted_by_pt(_cs.inclusive_jets()))
        gmbge.set_particles(_tpsj)
        # print("rho   = ", gmbge.rho())
        # print("sigma = ", gmbge.sigma())

        # _jets = jet_selector(jet_def(_tpsj))
        # _jets_a = [[iev_id, j.perp(), j.eta(), j.phi()] for j in _jets]
        # _jets_a = pd.DataFrame(np.array([[iev_id, j.perp(), j.eta(), j.phi()] for j in _jets]), columns=['evid', 'pt', 'eta', 'phi'])
        _jets_a = pd.DataFrame([[
            iev_id,
            j.perp(),
            j.eta(),
            j.phi(),
            j.area(),
            j.perp() - gmbge.rho() * j.area()
        ] for j in _jets],
                               columns=output_columns)
        # , columns=['evid, pt, eta, phi']
        e_jets = e_jets.append(_jets_a, ignore_index=True)
        # print('event', i, 'number of parts', len(_tpsj), 'number of jets', len(_jets))
        # print(_jets_a.describe())
        if args.fjsubtract:
            fj_example_02_area(_tpsj)

    # print(e_jets.describe())
    joblib.dump(e_jets, args.output)
コード例 #9
0
def main():
	parser = argparse.ArgumentParser(description='test the TennGen', prog=os.path.basename(__file__))
	pyconf.add_standard_pythia_args(parser)
	parser.add_argument('--ignore-mycfg', help="ignore some settings hardcoded here", default=False, action='store_true')
	parser.add_argument('--cent-bin', help="centraility bin 0 is the  0-5 % most central bin", type=int, default=0)
	parser.add_argument('--seed', help="pr gen seed", type=int, default=1111)
	parser.add_argument('--harmonics', help="set harmonics flag (0 : v1 - v5) , (1 : v2 - v5) , (2: v3 - v5) , (3: v1 - v4) , (4: v1 - v3) , (5: uniform dN/dphi no harmonics) , (6 : v1 - v2 , v4 - v5) , (7 : v1 - v3 , v5) , (8 : v1 , v3 - v5) , (9 : v1 only) , (10 : v2 only) , (11 : v3 only) , (12 : v4 only) , (13 : v5 only)", 
						type=int, default=5)
	parser.add_argument('--eta', help="set eta range must be uniform (e.g. |eta| < 0.9, which is ALICE TPC fiducial acceptance)",
						type=float, default=0.9)
	parser.add_argument('--qa', help="PrintOutQAHistos", default=False, action='store_true')

	args = parser.parse_args()

	args.py_pthatmin = 100
	mycfg = ['PhaseSpace:pThatMin = {}'.format(args.py_pthatmin)]
	if args.ignore_mycfg:
		mycfg = []
	pythia = pyconf.create_and_init_pythia_from_args(args, mycfg)
	if not pythia:
		perror("pythia initialization failed.")
		return

	tgbkg = ROOT.TennGen() # //constructor
	tgbkg.SetCentralityBin(args.cent_bin) # //centraility bin 0 is the  0-5 % most central bin
	tgbkg.SetRandomSeed(args.seed) # //setting the seed
	tgbkg.SetHarmonics(args.harmonics) # // set harmonics flag (0 : v1 - v5) , (1 : v2 - v5) , (2: v3 - v5) , (3: v1 - v4) , (4: v1 - v3) , (5: uniform dN/dphi no harmonics) , (6 : v1 - v2 , v4 - v5) , (7 : v1 - v3 , v5) , (8 : v1 , v3 - v5) , (9 : v1 only) , (10 : v2 only) , (11 : v3 only) , (12 : v4 only) , (13 : v5 only)
	tgbkg.SetEtaRange(args.eta) # //set eta range must be uniform (e.g. |eta| < 0.9, which is ALICE TPC fiducial acceptance)
	tgbkg.PrintOutQAHistos(args.qa) #
	tgbkg.InitializeBackground() #

	jet_R0 = 0.4
	jet_def = fj.JetDefinition(fj.antikt_algorithm, jet_R0)
	jet_selector_pythia = fj.SelectorPtMin(args.py_pthatmin) & fj.SelectorPtMax(1000.0) &fj.SelectorAbsEtaMax(args.eta - jet_R0)
	jet_selector_hybrid = fj.SelectorPtMin(10) & fj.SelectorPtMax(1000.0) &fj.SelectorAbsEtaMax(args.eta - jet_R0)
	# jet_selector = fj.SelectorPtMin(40.0) & fj.SelectorPtMax(200.0) &fj.SelectorAbsEtaMax(1)
	parts_selector = fj.SelectorAbsEtaMax(args.eta)
	print(jet_def)

	tw = treewriter.RTreeWriter(name = 'tparts', file_name = 'test_TennGen.root')

	if args.nev < 100:
		args.nev = 100
	pbar = tqdm.tqdm(total = args.nev)
	while pbar.n < args.nev:
		if not pythia.next():
			continue

		# get pythia particles
		# parts = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal, pythiafjext.kCharged], 0, False)
		_py_fj_parts = parts_selector(pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], 0, False))
		# get jets w/o area determination
		# pythia_jets = jet_selector_pythia(jet_def(_py_fj_parts))

		# with area determination
		jet_area_def = fj.AreaDefinition(fj.active_area, fj.GhostedAreaSpec(args.eta))
		cs = fj.ClusterSequenceArea(_py_fj_parts, jet_def, jet_area_def)
		pythia_jets = jet_selector_pythia(cs.inclusive_jets())

		if len(pythia_jets) < 1:
			continue
		pbar.update(1)
		tw.fill_branches(pyj = pythia_jets)

		# now generate bg
		bg_tclones = tgbkg.GetBackground()
		# tgbkg.GetRandomSeed()
		nParticles = bg_tclones.GetEntries();
		# pinfo('event', pbar.n, 'number of parts', nParticles)
		# _parts = { 'pt' : [], 'eta' : [], 'phi' : [], 'kf' : []}
		_parts = [[], [], [], []]
		_ = [[_parts[0].append(p[0].Pt()), _parts[1].append(p[0].Eta()), _parts[2].append(p[0].Phi()), _parts[3].append(p[1])] for p in [[tlv_from_tmcparticle(_p), _p.GetKF()] for _p in bg_tclones if _p.GetEnergy()>0]]
		_bg_fj_parts = fjext.vectorize_pt_eta_phi(_parts[0], _parts[1], _parts[2], 1000) #bg particles with index > 1000

		# add background and pythia 
		_fj_parts = []
		_ = [_fj_parts.append(_p) for _p in _py_fj_parts]
		_ = [_fj_parts.append(_p) for _p in _bg_fj_parts]

		# stream all particles
		_ = [tw.fill_branches(part_pt = _pfj.perp(), part_eta = _pfj.eta(), part_phi = _pfj.phi(), part_idx=_pfj.user_index()) for _pfj in _fj_parts]

		# find jets in the hybrid event
		# w/o area
		# jets = jet_selector_hybrid(jet_def(_fj_parts))
		# w/area
		cs_hybrid = fj.ClusterSequenceArea(_fj_parts, jet_def, jet_area_def)
		jets = jet_selector_hybrid(cs_hybrid.inclusive_jets())
		# stream jets from the hybrid event
		tw.fill_branches(j = jets)

		# estimate the background
		bg_rho_range = fj.SelectorAbsEtaMax(args.eta * 1.1)
		bg_jet_def = fj.JetDefinition(fj.kt_algorithm, jet_R0)
		bg_area_def = fj.AreaDefinition(fj.active_area_explicit_ghosts, fj.GhostedAreaSpec(args.eta))
		# bg_area_def = fj.AreaDefinition(fj.active_area, fj.GhostedAreaSpec(args.eta)) #active area defunct for bg estim
		bg_estimator = fj.JetMedianBackgroundEstimator(bg_rho_range, bg_jet_def, bg_area_def)
		bg_estimator.set_particles(_fj_parts)
		if len(_fj_parts) < 0:
			perror('no particles in the hybrid event?')
			continue
		rho = bg_estimator.rho()
		sigma = bg_estimator.sigma()
		corr_jet_pt = [j.pt() - j.area() * rho for j in jets]
		# matches = [j.perp(), matched_jet(j, pythia_jets) for j in jets]
		delta_pt = [delta_pt_matched(j, pythia_jets, rho) for j in jets]
		tw.fill_branches(j_corr_pt = corr_jet_pt, dpt = delta_pt)
		tw.fill_branches(rho = rho, rho_sigma = sigma)

		tw.fill_tree()
		bg_tclones.Clear()

	pbar.close()

	tgbkg.CloserFunction()
	tw.write_and_close()