コード例 #1
0
ファイル: ep.py プロジェクト: gaow/FaST-LMM
    def _rmll_gradient(self,
                       optSig02=True,
                       optSig12=True,
                       optSign2=True,
                       optBeta=True):
        self._updateConstants()
        self._updateApproximation()

        K0 = self._K0
        K1 = self._K1
        m = self._mean
        ttau = self._ttau
        tnu = self._tnu
        Ssq = self._Ssq
        LnSsq = self._LnSsq
        LnSsqK = self._LnSsqK

        Smtnu = ttau * m - tnu

        b = Smtnu - dot(LnSsq.T, dot(LnSsqK, Smtnu))

        ret = []

        if optSig02:
            r = 0.5 * (dot(b, dot(K0, b)) - trace2(LnSsq.T, dot(LnSsq, K0)))
            ret.append(r)

        if optSig12:
            r = 0.5 * (dot(b, dot(K1, b)) - trace2(LnSsq.T, dot(LnSsq, K1)))
            ret.append(r)

        if optSign2:
            r = 0.5 * (dot(b, b) - trace2(LnSsq.T, LnSsq))
            ret.append(r)

        if optBeta:
            r = -dot(b, self._X)
            ret += list(r)

        ret = NP.array(ret)
        assert NP.all(NP.isfinite(
            ret)), 'Not finite regular marginal loglikelihood gradient.'

        return ret
コード例 #2
0
ファイル: ep.py プロジェクト: gaow/FaST-LMM
    def _rmll_gradient(self,
                       optSig02=True,
                       optSig12=True,
                       optSign2=True,
                       optBeta=True):
        self._updateConstants()
        self._updateApproximation()

        m = self._mean
        H = self._H
        V = self._V
        ttau = self._ttau
        tnu = self._tnu
        G0 = self._G0
        G1 = self._G1

        Smtnu = ttau * m - tnu
        KSmtnu = self._rdotK(Smtnu)

        b = Smtnu - V * KSmtnu + dot(H.T, dot(H, KSmtnu))

        ret = []
        if optSig02:
            r = 0.5*(dot(b, dot(G0, dot(G0.T, b))) - trace2(ddot(V, G0, left=True), G0.T)\
                + trace2(H.T, dot(dot(H, G0), G0.T)))

            ret.append(r)

        if optSig12:
            r = 0.5*(dot(b, dot(G1, dot(G1.T, b))) - trace2(ddot(V, G1, left=True), G1.T)\
                + trace2(H.T, dot(dot(H, G1), G1.T)))

            ret.append(r)

        if optSign2:
            r = 0.5*(dot(b, b) - NP.sum(V)\
                + trace2(H.T, H))

            ret.append(r)

        if optBeta:
            ret += list(-dot(b, self._X))

        return NP.array(ret)
コード例 #3
0
ファイル: ep.py プロジェクト: bdepardo/FaST-LMM
    def _rmll_gradient(self, optSig02=True, optSig12=True, optSign2=True, optBeta=True):
        self._updateConstants()
        self._updateApproximation()
        
        m = self._mean
        H = self._H
        V = self._V
        ttau = self._ttau
        tnu = self._tnu
        G0 = self._G0
        G1 = self._G1

        Smtnu = ttau*m - tnu
        KSmtnu = self._rdotK(Smtnu)

        b = Smtnu - V*KSmtnu + dot(H.T, dot(H, KSmtnu))

        ret = []
        if optSig02:
            r = 0.5*(dot(b, dot(G0, dot(G0.T, b))) - trace2(ddot(V, G0, left=True), G0.T)\
                + trace2(H.T, dot(dot(H, G0), G0.T)))
            
            ret.append(r)

        if optSig12:
            r = 0.5*(dot(b, dot(G1, dot(G1.T, b))) - trace2(ddot(V, G1, left=True), G1.T)\
                + trace2(H.T, dot(dot(H, G1), G1.T)))
            
            ret.append(r)

        if optSign2:
            r = 0.5*(dot(b, b) - NP.sum(V)\
                + trace2(H.T, H))
            
            ret.append(r)

        if optBeta:
            ret += list(-dot(b, self._X))

        return NP.array(ret)
コード例 #4
0
ファイル: ep.py プロジェクト: bdepardo/FaST-LMM
    def _rmll_gradient(self, optSig02=True, optSig12=True, optSign2=True, optBeta=True):
        self._updateConstants()
        self._updateApproximation()

        K0 = self._K0
        K1 = self._K1
        m = self._mean
        ttau = self._ttau
        tnu = self._tnu
        Ssq = self._Ssq
        LnSsq = self._LnSsq
        LnSsqK = self._LnSsqK

        Smtnu = ttau*m - tnu

        b = Smtnu - dot(LnSsq.T, dot(LnSsqK, Smtnu) )

        ret = []

        if optSig02:
            r = 0.5*(dot(b,dot(K0,b)) - trace2(LnSsq.T, dot(LnSsq, K0)))
            ret.append(r)

        if optSig12:
            r = 0.5*(dot(b,dot(K1,b)) - trace2(LnSsq.T, dot(LnSsq, K1)))
            ret.append(r)

        if optSign2:
            r = 0.5*(dot(b,b) - trace2(LnSsq.T, LnSsq))
            ret.append(r)

        if optBeta:
            r = -dot(b, self._X)
            ret += list(r)
            
        ret = NP.array(ret)
        assert NP.all(NP.isfinite(ret)), 'Not finite regular marginal loglikelihood gradient.'
        
        return ret
コード例 #5
0
ファイル: laplace.py プロジェクト: bdepardo/FaST-LMM
    def _rmll_gradient(self, optSig02=True, optSig12=True, optSign2=True, optBeta=True):
        self._updateConstants()
        self._updateApproximation()

        W = self._W
        Wsq = self._Wsq
        f = self._f
        K = self._K
        K0 = self._K0
        K1 = self._K1
        m = self._mean
        a = self._a
        Ln = self._Ln
        X = self._X

        LnWsq = stl(Ln, NP.diag(Wsq))
        LnWsqK = dot(LnWsq, K)

        d = self._dKn()
        h = self._likelihood.third_derivative_log(f)
        diags = (d - dotd(LnWsqK.T, LnWsqK)) * h

        ret = []

        if optSig02:
            dK0a = dot(K0, a)
            dF0 = dK0a - dot(LnWsqK.T, dot(LnWsq, dK0a))

            r = dot(a, dF0) - dot(a, dF0) + 0.5*dot(a, dK0a)\
                + 0.5*NP.sum( diags*dF0 )\
                - 0.5*trace2( LnWsq.T, dot(LnWsq,K0) )

            ret.append(r)

        if optSig12:
            dK1a = dot(K1, a)
            dF1 = dK1a - dot(LnWsqK.T, dot(LnWsq, dK1a))

            r = dot(a, dF1) - dot(a, dF1) + 0.5*dot(a, dK1a)\
                + 0.5*NP.sum( diags*dF1 )\
                - 0.5*trace2( LnWsq.T, dot(LnWsq,K1) )

            ret.append(r)

        if optSign2:
            dFn = a - dot(LnWsqK.T, dot(LnWsq, a))

            r = dot(a, dFn) - dot(a, dFn) + 0.5*dot(a, a)\
                + 0.5*NP.sum( diags*dFn )\
                - 0.5*trace2( LnWsq.T, LnWsq )

            ret.append(r)

        if optBeta:
            dFmb = -dot(LnWsqK.T, dot(LnWsq, X))
            dFb = dFmb+X

            r = dot(a, dFb) - dot(a, dFmb)\
                + 0.5*NP.sum( diags*dFb.T, 1)

            ret += list(r)

        ret = NP.array(ret)
        assert NP.all(NP.isfinite(ret)), 'Not finite regular marginal loglikelihood gradient.'
        
        return ret
コード例 #6
0
ファイル: laplace.py プロジェクト: bdepardo/FaST-LMM
    def _rmll_gradient(self, optSig02=True, optSig12=True, optSign2=True, optBeta=True):
        self._updateConstants()
        self._updateApproximation()

        (f,a)=(self._f,self._a)
        (W,Wsq) = (self._W,self._Wsq)
        Lk = self._Lk

        m = self._mean
        X = self._X
        G0 = self._G0
        G1 = self._G1
        sign2 = self._sign2
        G01 = self._G01

        #g = self._likelihood.gradient_log(f)
        #a==g

        h = self._likelihood.third_derivative_log(f)

        V = W/self._A

        d = self._dKn()
        G01tV = ddot(G01.T, V, left=False)
        H = stl(Lk, G01tV)
        dkH = self._ldotK(H)
        diags = (d - sign2**2 * V - dotd(G01, dot(dot(G01tV, G01), G01.T))\
            - 2.0*sign2*dotd(G01, G01tV) + dotd(dkH.T, dkH)) * h

        ret = []
        
        if optSig02:
            dK0a = dot(G0, dot(G0.T, a))
            t = V*dK0a - dot(H.T, dot(H, dK0a))
            dF0 = dK0a - self._rdotK(t)

            LkG01VG0 = dot(H, G0)
            VG0 = ddot(V, G0, left=True)

            ret0 = dot(a, dF0) - 0.5*dot(a, dK0a) + dot(f-m, t)\
                + 0.5*NP.sum( diags*dF0 )\
                + -0.5*trace2(VG0, G0.T) + 0.5*trace2( LkG01VG0.T, LkG01VG0 )
            
            ret.append(ret0)

        if optSig12:
            dK1a = dot(G1, dot(G1.T, a))
            t = V*dK1a - dot(H.T, dot(H, dK1a))
            dF1 = dK1a - self._rdotK(t)

            LkG01VG1 = dot(H, G1)
            VG1 = ddot(V, G1, left=True)

            ret1 = dot(a, dF1)- 0.5*dot(a, dK1a) + dot(f-m, t)\
                + 0.5*NP.sum( diags*dF1 )\
                + -0.5*trace2(VG1, G1.T) + 0.5*trace2( LkG01VG1.T, LkG01VG1 )
            
            ret.append(ret1)

        if optSign2:
            t = V*a - dot(H.T, dot(H, a))
            dFn = a - self._rdotK(t)

            retn = dot(a, dFn)- 0.5*dot(a, a) + dot(f-m, t)\
                + 0.5*NP.sum( diags*dFn )\
                + -0.5*NP.sum(V) + 0.5*trace2( H.T, H )
            
            ret.append(retn)

        if optBeta:
            t = ddot(V, X, left=True) - dot(H.T, dot(H, X))
            dFbeta = X - self._rdotK(t)

            retbeta = dot(a, dFbeta) + dot(f-m, t)
            for i in range(dFbeta.shape[1]):
                retbeta[i] += 0.5*NP.sum( diags*dFbeta[:,i] )

            ret.extend(retbeta)

        ret = NP.array(ret)
        assert NP.all(NP.isfinite(ret)), 'Not finite regular marginal loglikelihood gradient.'
        
        return ret
コード例 #7
0
    def _rmll_gradient(self,
                       optSig02=True,
                       optSig12=True,
                       optSign2=True,
                       optBeta=True):
        self._updateConstants()
        self._updateApproximation()

        W = self._W
        Wsq = self._Wsq
        f = self._f
        K = self._K
        K0 = self._K0
        K1 = self._K1
        m = self._mean
        a = self._a
        Ln = self._Ln
        X = self._X

        LnWsq = stl(Ln, NP.diag(Wsq))
        LnWsqK = dot(LnWsq, K)

        d = self._dKn()
        h = self._likelihood.third_derivative_log(f)
        diags = (d - dotd(LnWsqK.T, LnWsqK)) * h

        ret = []

        if optSig02:
            dK0a = dot(K0, a)
            dF0 = dK0a - dot(LnWsqK.T, dot(LnWsq, dK0a))

            r = dot(a, dF0) - dot(a, dF0) + 0.5*dot(a, dK0a)\
                + 0.5*NP.sum( diags*dF0 )\
                - 0.5*trace2( LnWsq.T, dot(LnWsq,K0) )

            ret.append(r)

        if optSig12:
            dK1a = dot(K1, a)
            dF1 = dK1a - dot(LnWsqK.T, dot(LnWsq, dK1a))

            r = dot(a, dF1) - dot(a, dF1) + 0.5*dot(a, dK1a)\
                + 0.5*NP.sum( diags*dF1 )\
                - 0.5*trace2( LnWsq.T, dot(LnWsq,K1) )

            ret.append(r)

        if optSign2:
            dFn = a - dot(LnWsqK.T, dot(LnWsq, a))

            r = dot(a, dFn) - dot(a, dFn) + 0.5*dot(a, a)\
                + 0.5*NP.sum( diags*dFn )\
                - 0.5*trace2( LnWsq.T, LnWsq )

            ret.append(r)

        if optBeta:
            dFmb = -dot(LnWsqK.T, dot(LnWsq, X))
            dFb = dFmb + X

            r = dot(a, dFb) - dot(a, dFmb)\
                + 0.5*NP.sum( diags*dFb.T, 1)

            ret += list(r)

        ret = NP.array(ret)
        assert NP.all(NP.isfinite(
            ret)), 'Not finite regular marginal loglikelihood gradient.'

        return ret
コード例 #8
0
    def _rmll_gradient(self,
                       optSig02=True,
                       optSig12=True,
                       optSign2=True,
                       optBeta=True):
        self._updateConstants()
        self._updateApproximation()

        (f, a) = (self._f, self._a)
        (W, Wsq) = (self._W, self._Wsq)
        Lk = self._Lk

        m = self._mean
        X = self._X
        G0 = self._G0
        G1 = self._G1
        sign2 = self._sign2
        G01 = self._G01

        #g = self._likelihood.gradient_log(f)
        #a==g

        h = self._likelihood.third_derivative_log(f)

        V = W / self._A

        d = self._dKn()
        G01tV = ddot(G01.T, V, left=False)
        H = stl(Lk, G01tV)
        dkH = self._ldotK(H)
        diags = (d - sign2**2 * V - dotd(G01, dot(dot(G01tV, G01), G01.T))\
            - 2.0*sign2*dotd(G01, G01tV) + dotd(dkH.T, dkH)) * h

        ret = []

        if optSig02:
            dK0a = dot(G0, dot(G0.T, a))
            t = V * dK0a - dot(H.T, dot(H, dK0a))
            dF0 = dK0a - self._rdotK(t)

            LkG01VG0 = dot(H, G0)
            VG0 = ddot(V, G0, left=True)

            ret0 = dot(a, dF0) - 0.5*dot(a, dK0a) + dot(f-m, t)\
                + 0.5*NP.sum( diags*dF0 )\
                + -0.5*trace2(VG0, G0.T) + 0.5*trace2( LkG01VG0.T, LkG01VG0 )

            ret.append(ret0)

        if optSig12:
            dK1a = dot(G1, dot(G1.T, a))
            t = V * dK1a - dot(H.T, dot(H, dK1a))
            dF1 = dK1a - self._rdotK(t)

            LkG01VG1 = dot(H, G1)
            VG1 = ddot(V, G1, left=True)

            ret1 = dot(a, dF1)- 0.5*dot(a, dK1a) + dot(f-m, t)\
                + 0.5*NP.sum( diags*dF1 )\
                + -0.5*trace2(VG1, G1.T) + 0.5*trace2( LkG01VG1.T, LkG01VG1 )

            ret.append(ret1)

        if optSign2:
            t = V * a - dot(H.T, dot(H, a))
            dFn = a - self._rdotK(t)

            retn = dot(a, dFn)- 0.5*dot(a, a) + dot(f-m, t)\
                + 0.5*NP.sum( diags*dFn )\
                + -0.5*NP.sum(V) + 0.5*trace2( H.T, H )

            ret.append(retn)

        if optBeta:
            t = ddot(V, X, left=True) - dot(H.T, dot(H, X))
            dFbeta = X - self._rdotK(t)

            retbeta = dot(a, dFbeta) + dot(f - m, t)
            for i in range(dFbeta.shape[1]):
                retbeta[i] += 0.5 * NP.sum(diags * dFbeta[:, i])

            ret.extend(retbeta)

        ret = NP.array(ret)
        assert NP.all(NP.isfinite(
            ret)), 'Not finite regular marginal loglikelihood gradient.'

        return ret