コード例 #1
0
ファイル: test.py プロジェクト: quanrd/GWAS_Pipeline
    def test_rmargll_after_optimization(self):
        model = LaplaceGLMM_N3K1('logistic')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        model.optimize()

        self.assertAlmostEqual(-6.75677866924,
                               model._regular_marginal_loglikelihood())

        model = EPGLMM_N3K1('erf')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        model.optimize()

        self.assertAlmostEqual(-6.75424440734,
                               model._regular_marginal_loglikelihood())

        model = LaplaceGLMM_N3K1('logistic', 'l2')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        model.optimize()

        self.assertAlmostEqual(-6.7584132443836662,
                               model._regular_marginal_loglikelihood())

        model = EPGLMM_N3K1('erf', 'l2')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        model.optimize()

        self.assertAlmostEqual(-6.7545709287754718,
                               model._regular_marginal_loglikelihood())
コード例 #2
0
ファイル: test.py プロジェクト: quanrd/GWAS_Pipeline
    def test_prediction(self):
        model = LaplaceGLMM_N3K1('logistic')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])

        ps = NP.array([0.30481858,0.22520247,0.78060709,0.44734337,0.58824651,0.052388,\
                       0.60337951,0.22886631,0.54169641,0.71888192])

        p = model.predict(self._X, self._G0, self._G1)
        for i in range(ps.shape[0]):
            self.assertAlmostEqual(ps[i], p[i], places=4)

        model = EPGLMM_N3K1('erf')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])

        ps = NP.array([0.35487175,  0.20959901,  0.77285232,  0.48305102,  0.59542164,\
                       0.02770879,  0.6205743 ,  0.14239838,  0.45330375,  0.77123692])

        p = model.predict(self._X, self._G0, self._G1)
        for i in range(ps.shape[0]):
            self.assertAlmostEqual(ps[i], p[i])
コード例 #3
0
ファイル: test.py プロジェクト: gaow/FaST-LMM
    def test_setK_rmargll_after_optimization(self):
        model = LaplaceGLMM_N3K1('logistic')
        model.setK(NP.dot(self._G0, self._G0.T), NP.dot(self._G1, self._G1.T))
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        model.optimize()

        self.assertAlmostEqual(-6.75677866924,
                               model._regular_marginal_loglikelihood())

        model = EPGLMM_N3K1('erf')
        model.setK(NP.dot(self._G0, self._G0.T), NP.dot(self._G1, self._G1.T))
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        model.optimize()

        self.assertAlmostEqual(-6.75424440734,
                               model._regular_marginal_loglikelihood())
コード例 #4
0
ファイル: test.py プロジェクト: DSLituiev/FaST-LMM
    def test_margll_gradient(self):
        def func(x, model):
            model.sig02 = x[0]
            model.sig12 = x[1]
            model.sign2 = x[2]
            model.beta = x[3:]
            return model.marginal_loglikelihood()

        def grad(x, model):
            model.sig02 = x[0]
            model.sig12 = x[1]
            model.sign2 = x[2]
            model.beta = x[3:]
            return model._mll_gradient()

        model = LaplaceGLMM_N3K1('logistic', 'l2')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        self.assertAlmostEqual( 0.0, SP.optimize.check_grad(func, grad, NP.array([1.0,1.2,1.5,-3.0,0.4]), model), places=5 )

        model = EPGLMM_N3K1('erf', 'l2')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        self.assertAlmostEqual( 0.0, SP.optimize.check_grad(func, grad, NP.array([1.0,1.2,1.5,-3.0,0.4]), model), places=5 )
コード例 #5
0
ファイル: test.py プロジェクト: DSLituiev/FaST-LMM
    def test_margll(self):
        model = LaplaceGLMM_N3K1('logistic', 'l2')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        self.assertAlmostEqual(-14.635329282675063, model.marginal_loglikelihood())

        model = EPGLMM_N3K1('erf', 'l2')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])
        self.assertAlmostEqual(-17.413719862714526, model.marginal_loglikelihood())
コード例 #6
0
ファイル: test.py プロジェクト: DSLituiev/FaST-LMM
    def test_rmargll(self):
        model = LaplaceGLMM_N3K1('logistic')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])

        self.assertAlmostEqual(-13.821329282675068, model._regular_marginal_loglikelihood())

        model = EPGLMM_N3K1('erf')
        model.setG(self._G0, self._G1)
        model.setX(self._X)
        model.sety(self._y)
        model.sig02 = 1.5
        model.sig12 = 0.5
        model.sign2 = 0.8
        model.beta = NP.array([2.0, -1.0])

        self.assertAlmostEqual(-16.599719862714529, model._regular_marginal_loglikelihood())