コード例 #1
0
ファイル: layer.py プロジェクト: alemagnani/fastnet
  def fprop(self, input, output, train=TRAIN):
    #util.log_info("%s %s", input.shape, output.shape)
    gpu_copy_to(input, output)

    if PFout:
    #if True:
      print_matrix(output, self.name)
コード例 #2
0
ファイル: layer.py プロジェクト: sportsbitenews/fastnet
  def fprop(self, input, output, train=TRAIN):
    #util.log_info("%s %s", input.shape, output.shape)
    gpu_copy_to(input, output)

    if PFout:
    #if True:
      print_matrix(output, self.name)
コード例 #3
0
ファイル: layer.py プロジェクト: alemagnani/fastnet
 def bprop(self, grad, input, output, outGrad):
   if self.dropRate > 0.0:
     gpu_copy_to(grad * self.dropMask, grad)
  
   gpu_copy_to(transpose(dot(transpose(grad), self.weight.wt)), outGrad)
   
   self.weight.set_grad(dot(grad, transpose(input)))
   add_row_sum_to_vec(self.bias.grad, grad, alpha=0.0)
コード例 #4
0
ファイル: layer.py プロジェクト: sportsbitenews/fastnet
 def bprop(self, grad, input, output, outGrad):
   if self.dropRate > 0.0:
     gpu_copy_to(grad * self.dropMask, grad)
  
   gpu_copy_to(transpose(dot(transpose(grad), self.weight.wt)), outGrad)
   
   self.weight.set_grad(dot(grad, transpose(input)))
   add_row_sum_to_vec(self.bias.grad, grad, alpha=0.0)
コード例 #5
0
ファイル: layer.py プロジェクト: alemagnani/fastnet
  def fprop(self, input, output, train=TRAIN):
    gpu_copy_to(dot(self.weight.wt, input), output)
    add_vec_to_rows(output, self.bias.wt)

    if train == TEST:
      if self.dropRate > 0.0:
        output *= (1.0 - self.dropRate)
    else:
      if self.dropRate > 0.0:
        self.dropMask = to_gpu(np.random.uniform(0, 1, output.size).astype(np.float32).reshape(output.shape))
        bigger_than_scaler(self.dropMask, self.dropRate)
        gpu_copy_to(output * self.dropMask, output)
    if PFout:
      print_matrix(output, self.name)
コード例 #6
0
ファイル: layer.py プロジェクト: sportsbitenews/fastnet
  def fprop(self, input, output, train=TRAIN):
    gpu_copy_to(dot(self.weight.wt, input), output)
    add_vec_to_rows(output, self.bias.wt)

    if train == TEST:
      if self.dropRate > 0.0:
        output *= (1.0 - self.dropRate)
    else:
      if self.dropRate > 0.0:
        self.dropMask = to_gpu(np.random.uniform(0, 1, output.size).astype(np.float32).reshape(output.shape))
        bigger_than_scaler(self.dropMask, self.dropRate)
        gpu_copy_to(output * self.dropMask, output)
    if PFout:
      print_matrix(output, self.name)
コード例 #7
0
ファイル: layer.py プロジェクト: alemagnani/fastnet
 def bprop(self, grad, input, output, outGrad):
   self.weight.grad.fill(0)
   self.bias.grad.fill(0)
  
   # bprop to next layer
   cudaconv2.convImgActs(grad, self.weight.wt, outGrad, self.img_size, self.img_size,
       self.outputSize, -self.padding, self.stride, self.numColor, 1, 0.0, 1.0)
   
   # bprop weight
   cudaconv2.convWeightActs(input, grad, self.weight.grad, self.img_size, self.outputSize,
       self.outputSize, self.filterSize, -self.padding, self.stride, self.numColor, 1, 0, 0, 1)
   
   # bprop bias
   gpu_copy_to(grad, self.tmp)
   add_row_sum_to_vec(self.bias.grad, self.tmp)
コード例 #8
0
ファイル: net.py プロジェクト: tesatory/fastnet
  def fprop(self, data, probs, train=TRAIN):
    assert len(self.outputs) > 0, 'No outputs: uninitialized network!'

    input = data
    for i in range(len(self.layers)):
      l = self.layers[i]
      #if isinstance(l, layer.DataLayer):
      #  self.outputs[i] = input
      #else:
      l.fprop(input, self.outputs[i], train)

      input = self.outputs[i]

    # probs.shape = self.outputs[-1].shape
    gpu_copy_to(self.outputs[-1], probs)
コード例 #9
0
    def fprop(self, data, probs, train=TRAIN):
        assert len(self.outputs) > 0, 'No outputs: uninitialized network!'

        input = data
        for i in range(len(self.layers)):
            l = self.layers[i]
            #if isinstance(l, layer.DataLayer):
            #  self.outputs[i] = input
            #else:
            l.fprop(input, self.outputs[i], train)

            input = self.outputs[i]

        # probs.shape = self.outputs[-1].shape
        gpu_copy_to(self.outputs[-1], probs)
コード例 #10
0
ファイル: layer.py プロジェクト: sportsbitenews/fastnet
 def bprop(self, grad, input, output, outGrad):
   self.weight.grad.fill(0)
   self.bias.grad.fill(0)
  
   # bprop to next layer
   cudaconv2.convImgActs(grad, self.weight.wt, outGrad, self.img_size, self.img_size,
       self.outputSize, -self.padding, self.stride, self.numColor, 1, 0.0, 1.0)
   
   # bprop weight
   cudaconv2.convWeightActs(input, grad, self.weight.grad, self.img_size, self.outputSize,
       self.outputSize, self.filterSize, -self.padding, self.stride, self.numColor, 1, 0, 0, 1)
   
   # bprop bias
   gpu_copy_to(grad, self.tmp)
   add_row_sum_to_vec(self.bias.grad, self.tmp)
コード例 #11
0
ファイル: layer.py プロジェクト: alemagnani/fastnet
  def fprop(self, input, output, train=TRAIN):
    #np.save('input.arr', input.get())
    #np.save('weight.arr', self.weight.wt.get())
    cudaconv2.convFilterActs(input, self.weight.wt, output, self.img_size, self.outputSize,
        self.outputSize, -self.padding, self.stride, self.numColor, 1)
    
    #util.log_info('%s', output.get().mean())
    self.tmp = gpuarray.empty((self.numFilter, 
                               self.get_single_img_size() * self.batch_size / self.numFilter),
                                dtype=np.float32)
    
    gpu_copy_to(output, self.tmp)
    add_vec_to_rows(self.tmp, self.bias.wt)
    gpu_copy_to(self.tmp, output)

    if PFout:
      print_matrix(output, self.name)
コード例 #12
0
ファイル: layer.py プロジェクト: sportsbitenews/fastnet
  def fprop(self, input, output, train=TRAIN):
    #np.save('input.arr', input.get())
    #np.save('weight.arr', self.weight.wt.get())
    cudaconv2.convFilterActs(input, self.weight.wt, output, self.img_size, self.outputSize,
        self.outputSize, -self.padding, self.stride, self.numColor, 1)
    
    #util.log_info('%s', output.get().mean())
    self.tmp = gpuarray.empty((self.numFilter, 
                               self.get_single_img_size() * self.batch_size / self.numFilter),
                                dtype=np.float32)
    
    gpu_copy_to(output, self.tmp)
    add_vec_to_rows(self.tmp, self.bias.wt)
    gpu_copy_to(self.tmp, output)

    if PFout:
      print_matrix(output, self.name)
コード例 #13
0
ファイル: net.py プロジェクト: tesatory/fastnet
  def adjust_learning_rate(self, factor):
    factors = factor
    train_data = self.train_data
    test_data = self.test_data
    train_label = self.train_label
    test_label = self.test_label

    weights = []
    biases = []
    epsW = []
    epsB = []

    print 'store the weight, bias and learning rate'
    for layer in self.layers:
      if isinstance(layer, WeightedLayer):
        weight = gpuarray.empty_like(layer.weight)
        gpu_copy_to(layer.weight, weight)
        weights.append(weight)
        epsW.append(layer.epsW)

        bias = gpuarray.empty_like(layer.bias)
        gpu_copy_to(layer.bias, bias)
        biases.append(bias)
        epsB.append(layer.epsB)

    print 'find the best learning rate'
    print 'the factor list is ', factors

    self.prepare_for_train(train_data, train_label)
    self.fprop(self.data, self.output)
    self.bprop(self.data, self.label, self.output)

    self.get_batch_information()
    self.update()

    self.train_batch(test_data, test_label, TEST)
    cost, correct, numCase = self.get_batch_information()
    best = (correct , 1.0)
    origin = (correct, 1.0)
    print 'The normal update produce the correct', correct, 'number of case is', numCase

    for factor in factors:
      print 'Try the factor', factor
      i = 0
      for layer in self.layers:
        if isinstance(layer, WeightedLayer):
          gpu_copy_to(weights[i], layer.weight)
          gpu_copy_to(biases[i], layer.bias)
          layer.epsW = epsW[i] * factor
          layer.epsB = epsB[i] * factor
          i += 1

      self.update()
      '''
      for layer in self.layers:
        if isinstance(layer, WeightedLayer):
          print 'epsW', layer.epsW, 'epsB', layer.epsB
          printMatrix(layer.weight, layer.name + 'weight')
          printMatrix(layer.bias, layer.name + 'bias')
      '''
      self.train_batch(test_data, test_label, TEST)
      cost, correct, numCase = self.get_batch_information()
      print 'Applying factor', factor, ', The correct is', correct, 'number of case is', numCase
      if correct > best[0]:
        best = (correct, factor)

    self.adjust_info.append((best[1], best[0], origin[0]))
    if best[0] / origin[0] < 1.025:
      best = origin
    factor = best[1]
    i = 0
    for layer in self.layers:
      if isinstance(layer, WeightedLayer):
        gpu_copy_to(weights[i], layer.weight)
        gpu_copy_to(biases[i], layer.bias)
        layer.epsW = epsW[i] * factor
        layer.epsB = epsB[i] * factor
        print 'Layer', layer.name
        print 'epsW is', layer.epsW, 'epsB is', layer.epsB
        i += 1
コード例 #14
0
    def adjust_learning_rate(self, factor):
        factors = factor
        train_data = self.train_data
        test_data = self.test_data
        train_label = self.train_label
        test_label = self.test_label

        weights = []
        biases = []
        epsW = []
        epsB = []

        print 'store the weight, bias and learning rate'
        for layer in self.layers:
            if isinstance(layer, WeightedLayer):
                weight = gpuarray.empty_like(layer.weight)
                gpu_copy_to(layer.weight, weight)
                weights.append(weight)
                epsW.append(layer.epsW)

                bias = gpuarray.empty_like(layer.bias)
                gpu_copy_to(layer.bias, bias)
                biases.append(bias)
                epsB.append(layer.epsB)

        print 'find the best learning rate'
        print 'the factor list is ', factors

        self.prepare_for_train(train_data, train_label)
        self.fprop(self.data, self.output)
        self.bprop(self.data, self.label, self.output)

        self.get_batch_information()
        self.update()

        self.train_batch(test_data, test_label, TEST)
        cost, correct, numCase = self.get_batch_information()
        best = (correct, 1.0)
        origin = (correct, 1.0)
        print 'The normal update produce the correct', correct, 'number of case is', numCase

        for factor in factors:
            print 'Try the factor', factor
            i = 0
            for layer in self.layers:
                if isinstance(layer, WeightedLayer):
                    gpu_copy_to(weights[i], layer.weight)
                    gpu_copy_to(biases[i], layer.bias)
                    layer.epsW = epsW[i] * factor
                    layer.epsB = epsB[i] * factor
                    i += 1

            self.update()
            '''
      for layer in self.layers:
        if isinstance(layer, WeightedLayer):
          print 'epsW', layer.epsW, 'epsB', layer.epsB
          printMatrix(layer.weight, layer.name + 'weight')
          printMatrix(layer.bias, layer.name + 'bias')
      '''
            self.train_batch(test_data, test_label, TEST)
            cost, correct, numCase = self.get_batch_information()
            print 'Applying factor', factor, ', The correct is', correct, 'number of case is', numCase
            if correct > best[0]:
                best = (correct, factor)

        self.adjust_info.append((best[1], best[0], origin[0]))
        if best[0] / origin[0] < 1.025:
            best = origin
        factor = best[1]
        i = 0
        for layer in self.layers:
            if isinstance(layer, WeightedLayer):
                gpu_copy_to(weights[i], layer.weight)
                gpu_copy_to(biases[i], layer.bias)
                layer.epsW = epsW[i] * factor
                layer.epsB = epsB[i] * factor
                print 'Layer', layer.name
                print 'epsW is', layer.epsW, 'epsB is', layer.epsB
                i += 1