コード例 #1
0
    def build_hooks(self):
        """
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.
        Returns:
            list[HookBase]:
        """
        logger = logging.getLogger(__name__)
        cfg = self.cfg.clone()
        cfg.defrost()
        cfg.DATALOADER.NUM_WORKERS = 0  # save some memory and time for PreciseBN
        cfg.DATASETS.NAMES = tuple([cfg.TEST.PRECISE_BN.DATASET
                                    ])  # set dataset name for PreciseBN

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(self.optimizer, self.scheduler),
        ]

        if cfg.TEST.PRECISE_BN.ENABLED and hooks.get_bn_modules(self.model):
            logger.info("Prepare precise BN dataset")
            ret.append(
                hooks.PreciseBN(
                    # Run at the same freq as (but before) evaluation.
                    self.model,
                    # Build a new data loader to not affect training
                    self.build_train_loader(cfg),
                    cfg.TEST.PRECISE_BN.NUM_ITER,
                ))

        if len(cfg.MODEL.FREEZE_LAYERS) > 0 and cfg.SOLVER.FREEZE_ITERS > 0:
            ret.append(
                hooks.LayerFreeze(
                    self.model,
                    cfg.MODEL.FREEZE_LAYERS,
                    cfg.SOLVER.FREEZE_ITERS,
                ))

        # Do PreciseBN before checkpointer, because it updates the model and need to
        # be saved by checkpointer.
        # This is not always the best: if checkpointing has a different frequency,
        # some checkpoints may have more precise statistics than others.

        def test_and_save_results():
            self._last_eval_results = self.test(self.cfg, self.model)
            return self._last_eval_results

        # Do evaluation before checkpointer, because then if it fails,
        # we can use the saved checkpoint to debug.
        ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))

        if comm.is_main_process():
            ret.append(
                hooks.PeriodicCheckpointer(self.checkpointer,
                                           cfg.SOLVER.CHECKPOINT_PERIOD))
            # run writers in the end, so that evaluation metrics are written
            ret.append(hooks.PeriodicWriter(self.build_writers(), 200))

        return ret
コード例 #2
0
    def build_hooks(self):
        ret = super().build_hooks()

        if self.cfg.MODEL.HEADS.PFC.ENABLED:
            # partial fc scheduler hook
            ret.append(
                hooks.LRScheduler(self.pfc_optimizer, self.pfc_scheduler))
        return ret
コード例 #3
0
    def build_hooks(self):
        ret = super().build_hooks()

        if self.cfg.MODEL.HEADS.PFC.ENABLED:
            # Make sure checkpointer is after writer
            ret.insert(
                len(ret) - 1,
                PfcPeriodicCheckpointer(self.pfc_checkpointer,
                                        self.cfg.SOLVER.CHECKPOINT_PERIOD))
            # partial fc scheduler hook
            ret.append(
                hooks.LRScheduler(self.pfc_optimizer, self.pfc_scheduler))
        return ret
コード例 #4
0
ファイル: train_hpo.py プロジェクト: yonghenglh6/fast-reid
    def build_hooks(self):
        r"""
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.
        Returns:
            list[HookBase]:
        """
        cfg = self.cfg.clone()
        cfg.defrost()

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(self.optimizer, self.scheduler),
        ]

        if cfg.MODEL.FREEZE_LAYERS != [''] and cfg.SOLVER.FREEZE_ITERS > 0:
            freeze_layers = ",".join(cfg.MODEL.FREEZE_LAYERS)
            logger.info(
                f'Freeze layer group "{freeze_layers}" training for {cfg.SOLVER.FREEZE_ITERS:d} iterations'
            )
            ret.append(
                hooks.FreezeLayer(
                    self.model,
                    self.optimizer,
                    cfg.MODEL.FREEZE_LAYERS,
                    cfg.SOLVER.FREEZE_ITERS,
                ))

        def test_and_save_results():
            self._last_eval_results = self.test(self.cfg, self.model)
            return self._last_eval_results

        # Do evaluation after checkpointer, because then if it fails,
        # we can use the saved checkpoint to debug.
        ret.append(TuneReportHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))

        # run writers in the end, so that evaluation metrics are written
        ret.append(
            hooks.PeriodicWriter([CommonMetricPrinter(self.max_iter)], 200))

        return ret
コード例 #5
0
    def build_hooks(self):
        r"""
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.
        Returns:
            list[HookBase]:
        """
        cfg = self.cfg.clone()
        cfg.defrost()

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(self.optimizer, self.scheduler),
        ]

        ret.append(
            hooks.LayerFreeze(
                self.model,
                cfg.MODEL.FREEZE_LAYERS,
                cfg.SOLVER.FREEZE_ITERS,
                cfg.SOLVER.FREEZE_FC_ITERS,
            ))

        def test_and_save_results():
            self._last_eval_results = self.test(self.cfg, self.model)
            return self._last_eval_results

        # Do evaluation after checkpointer, because then if it fails,
        # we can use the saved checkpoint to debug.
        ret.append(TuneReportHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))

        if comm.is_main_process():
            # run writers in the end, so that evaluation metrics are written
            ret.append(
                hooks.PeriodicWriter([CommonMetricPrinter(self.max_iter)],
                                     200))

        return ret