def test_mfdfa_save_load(): mfdfa = fathon.MFDFA(fu.toAggregated(ts)) # save and load with empty results mfdfa.saveObject(get_object_path('mfdfa_obj')) n_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'n') F_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'F') q_list_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'qList') list_h_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'listH') assert np.array_equal(n_load, []) assert np.array_equal(F_load, []) assert np.array_equal(q_list_load, []) assert np.array_equal(list_h_load, []) #save and load with results n, F = mfdfa.computeFlucVec(fu.linRangeByStep(10, 500), fu.linRangeByStep(-1, 1)) H, I = mfdfa.fitFlucVec(100, 300) mfdfa.saveObject(get_object_path('mfdfa_obj')) n_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'n') F_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'F') q_list_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'qList') list_h_load = fu.getObjectMember(get_object_path('mfdfa_obj', ext=True), 'listH') assert np.array_equal(n_load, n) assert np.array_equal(F_load, F) assert np.array_equal(q_list_load, fu.linRangeByStep(-1, 1)) assert np.array_equal(list_h_load, H) # MFDFA from file mfdfa_2 = fathon.MFDFA(get_object_path('mfdfa_obj', ext=True)) H_2, I_2 = mfdfa_2.fitFlucVec(100, 300) assert np.array_equal(H_2, H) assert np.array_equal(I_2, I)
def test_mfdfa(): pymfdfa = fathon.MFDFA(ts3) qs = np.arange(-3, 3, 1) winSizes = fu.linRangeByStep(10, 200) n2, F2 = pymfdfa.computeFlucVec(winSizes, qs, revSeg=True) H2, H_int2 = pymfdfa.fitFlucVec() assert math.isclose(H2[2], 1.1956312585360254)
def test_multifractal_spectrum(): pymfdfa = fathon.MFDFA(ts3) qs = np.arange(-3, 3, 1) winSizes = fu.linRangeByStep(10, 200) n2, F2 = pymfdfa.computeFlucVec(winSizes, qs, revSeg=True) H2, H_int2 = pymfdfa.fitFlucVec() a2, m2 = pymfdfa.computeMultifractalSpectrum() assert math.isclose(m2[4], 0.8445200259231695)
def test_mat_mfdfa_wn(): w_mfdfa = fathon.MFDFA(fu.toAggregated(wn)) n_w, F_w = w_mfdfa.computeFlucVec(scales, qList=q_list, revSeg=False, polOrd=1) idxs = get_idxs(n_w, scales) n_w = n_w[idxs] F_w_vec = np.zeros((len(q_list), len(idxs))) for i in range(len(q_list)): F_w_vec[i] = F_w[i, idxs] Hq = [] for i in range(len(q_list)): Hq.append(np.polyfit(np.log2(n_w), np.log2(F_w_vec[i]), 1)[0]) np.testing.assert_allclose( Hq, [0.4583, 0.4555, 0.4546, 0.4515, 0.4445, 0.4340], rtol=1e-4, atol=0)
def test_mat_mfdfa_mf(): mf_mfdfa = fathon.MFDFA(fu.toAggregated(mf)) n_mf, F_mf = mf_mfdfa.computeFlucVec(scales, qList=q_list, revSeg=False, polOrd=1) idxs = get_idxs(n_mf, scales) n_mf = n_mf[idxs] F_mf_vec = np.zeros((len(q_list), len(idxs))) for i in range(len(q_list)): F_mf_vec[i] = F_mf[i, idxs] Hq = [] for i in range(len(q_list)): Hq.append(np.polyfit(np.log2(n_mf), np.log2(F_mf_vec[i]), 1)[0]) np.testing.assert_allclose( Hq, [1.4477, 1.3064, 1.0823, 0.8846, 0.6606, 0.5174], rtol=1e-4, atol=0)
def test_mat_mfdfa_mn(): mn_mfdfa = fathon.MFDFA(fu.toAggregated(mn)) n_mn, F_mn = mn_mfdfa.computeFlucVec(scales, qList=q_list, revSeg=False, polOrd=1) idxs = get_idxs(n_mn, scales) n_mn = n_mn[idxs] F_mn_vec = np.zeros((len(q_list), len(idxs))) for i in range(len(q_list)): F_mn_vec[i] = F_mn[i, idxs] Hq = [] for i in range(len(q_list)): Hq.append(np.polyfit(np.log2(n_mn), np.log2(F_mn_vec[i]), 1)[0]) np.testing.assert_allclose( Hq, [0.7542, 0.7392, 0.7301, 0.7240, 0.7149, 0.7023], rtol=1e-4, atol=0)
usd_volume_bar_df = testClass.get_concat_data(testClass._bars_dict)['usd_volume_bars'] calendar_bar_df = testClass.get_concat_data(testClass._bars_dict)['calendar_bars'] vr = returns(volume_bar_df.micro_price_close).replace([np.inf, -np.inf], 0) # volume tr = returns(tick_bar_df.micro_price_close).replace([np.inf, -np.inf], 0) # tick dr = returns(usd_volume_bar_df.micro_price_close).dropna().replace([np.inf, -np.inf], 0) # usd volume df_ret = returns(calendar_bar_df.micro_price_close).dropna().replace([np.inf, -np.inf], 0) # calendar bar_returns[date] = {'tick': tr, 'volume': vr, 'dollar': dr, 'calendar': df_ret} for j, i in itertools.product(['tick', 'volume', 'dollar', 'calendar'], dates): data = (bar_returns[i][j]) a = fu.toAggregated(np.asanyarray(data)) # MFDFA Computations pymfdfa = fathon.MFDFA(a) n, F = pymfdfa.computeFlucVec(winSizes, qs, revSeg=revSeg, polOrd=polOrd) mfdfa_n_F_dict[j][i] = dict(zip(n, F)) # dictionary to match all the n and F values this could be # more efficient # get the list values of H and intercept list_H, list_H_intercept = pymfdfa.fitFlucVec() # same for H values mfdfa_H_dict[j][i] = [list_H, list_H_intercept] # get the mass exponents tau = pymfdfa.computeMassExponents() mfdfa_tau_dict[j][i] = tau # get the multi-fractal spectrum