# Show the seeds first to confirm that they are right fig = mlab.figure() fig.scene.background = (1, 1, 1) vis.plot_prism_mesh(model, style='wireframe', xy2ne=True) plot = vis.plot_prism_mesh(seed_mesh, style='surface', xy2ne=True) axes = mlab.axes(plot, nb_labels=5, extent=extent, color=(0,0,0)) axes.label_text_property.color = (0,0,0) axes.title_text_property.color = (0,0,0) axes.axes.label_format = "%-#.0f" mlab.outline(color=(0,0,0), extent=extent) mlab.show() # Run the inversion results = gplant.grow(data, mesh, seeds, compactness=10.**(20), power=7, threshold=1*10**(-4), norm=1, neighbor_type='reduced', jacobian_file=None, distance_type='radial') # Unpack the results and calculate the adjustment estimate, residuals, misfits, goals = results adjusted = gplant.adjustment(data, residuals) fatiando.mesh.fill(estimate, mesh) # Pickle results for later log.info("Pickling results") output = open('mesh.pickle', 'w') pickle.dump(mesh, output) output.close() seed_file = open("seeds.pickle", 'w') pickle.dump(seeds, seed_file) seed_file.close()
nb_labels=5, extent=extent, ranges=ranges, color=(0, 0, 0)) axes.label_text_property.color = (0, 0, 0) axes.title_text_property.color = (0, 0, 0) axes.axes.label_format = "%-#.0f" mlab.outline(color=(0, 0, 0), extent=extent) mlab.show() # Run the inversion results = gplant.grow(data, mesh, seeds, compactness=10.**(5), power=3, threshold=10 * 10**(-7), norm=2, neighbor_type='reduced', jacobian_file=None, distance_type='cell') # Unpack the results and calculate the adjustment estimate, residuals, misfits, goals = results adjusted = gplant.adjustment(data, residuals) fatiando.mesh.fill(estimate, mesh) corpo = fatiando.mesh.vfilter(mesh, 1, 1000) # Pickle results for later log.info("Pickling results") io.dump('adjusted.txt', adjusted['gz']) #output = open('mesh.pickle', 'w')
# Show the seeds first to confirm that they are right fig = mlab.figure() fig.scene.background = (1, 1, 1) vis.plot_prism_mesh(model, style='wireframe', xy2ne=True) plot = vis.plot_prism_mesh(seed_mesh, style='surface', xy2ne=True) axes = mlab.axes(plot, nb_labels=5, extent=extent, ranges=ranges, color=(0,0,0)) axes.label_text_property.color = (0,0,0) axes.title_text_property.color = (0,0,0) axes.axes.label_format = "%-#.0f" mlab.outline(color=(0,0,0), extent=extent) mlab.show() # Run the inversion results = gplant.grow(data, mesh, seeds, compactness=10.**(5), power=3, threshold=10*10**(-7), norm=2, neighbor_type='reduced', jacobian_file=None, distance_type='cell') # Unpack the results and calculate the adjustment estimate, residuals, misfits, goals = results adjusted = gplant.adjustment(data, residuals) fatiando.mesh.fill(estimate, mesh) corpo = fatiando.mesh.vfilter(mesh, 1, 1000) # Pickle results for later log.info("Pickling results") io.dump('adjusted.txt', adjusted['gz']) #output = open('mesh.pickle', 'w') #pickle.dump(mesh, output) #output.close() output = open('model.pickle', 'w')
pylab.ylabel('Easting [m]') pylab.show() fig = mlab.figure() fig.scene.background = (1, 1, 1) fig.scene.camera.yaw(230) plot = vis.plot_prism_mesh(mesh, opacity=0.4) plot = vis.plot_prism_mesh(seed_mesh) axes = mlab.axes(plot, nb_labels=5, extent=[xmin,xmax,ymin,ymax,-zmax,-zmin]) mlab.show() # Run the inversion results = gplant.grow(data, mesh, seeds, compactness=10**(5), power=5, norm=1, threshold=5*10**(-5), jacobian_file=None, distance_type='radial') estimate, residuals, misfits, goals = results adjusted = gplant.adjustment(data, residuals) fatiando.mesh.fill(estimate, mesh, fillNone=False) log.info("Pickling results") output = open('mesh.pickle', 'w') pickle.dump(mesh, output) output.close() seed_file = open("seeds.pickle", 'w')
fig.scene.background = (1, 1, 1) vis.plot_prism_mesh(model, style='wireframe', xy2ne=True) plot = vis.plot_prism_mesh(seed_mesh, style='surface', xy2ne=True) axes = mlab.axes(plot, nb_labels=5, extent=extent, color=(0, 0, 0)) axes.label_text_property.color = (0, 0, 0) axes.title_text_property.color = (0, 0, 0) axes.axes.label_format = "%-#.0f" mlab.outline(color=(0, 0, 0), extent=extent) mlab.show() # Run the inversion results = gplant.grow(data, mesh, seeds, compactness=10.**(20), power=7, threshold=1 * 10**(-4), norm=1, neighbor_type='reduced', jacobian_file=None, distance_type='radial') # Unpack the results and calculate the adjustment estimate, residuals, misfits, goals = results adjusted = gplant.adjustment(data, residuals) fatiando.mesh.fill(estimate, mesh) # Pickle results for later log.info("Pickling results") output = open('mesh.pickle', 'w') pickle.dump(mesh, output) output.close()
fig.scene.background = (1, 1, 1) fig.scene.camera.yaw(230) plot = vis.plot_prism_mesh(mesh, opacity=0.4) plot = vis.plot_prism_mesh(seed_mesh) axes = mlab.axes(plot, nb_labels=5, extent=[xmin, xmax, ymin, ymax, -zmax, -zmin]) mlab.show() # Run the inversion results = gplant.grow(data, mesh, seeds, compactness=10**(5), power=5, norm=1, threshold=5 * 10**(-5), jacobian_file=None, distance_type='radial') estimate, residuals, misfits, goals = results adjusted = gplant.adjustment(data, residuals) fatiando.mesh.fill(estimate, mesh, fillNone=False) log.info("Pickling results") output = open('mesh.pickle', 'w') pickle.dump(mesh, output)