def fwd_grav_fatiando(): """ GravMag: 3D imaging using the migration method on synthetic gravity data (more complex model + noisy data) """ # Make some synthetic gravity data from a simple prism model za = 5000 zb = 7000 model = [mesher.Prism(-4000, 0, -4000, -2000, za, zb, {'density': 1200})] #, # mesher.Prism(-1000, 1000, -1000, 1000, 1000, 7000, {'density': -800}), # mesher.Prism(2000, 4000, 3000, 4000, 0, 2000, {'density': 600})] # Calculate on a scatter of points to show that migration doesn't need gridded # data # xp, yp, zp = gridder.scatter((-6000, 6000, -6000, 6000), 1000, z=0) shape = (25, 25) xp, yp, zp = gridder.regular((-5000, 5000, -5000, 5000), shape, z=0) #gz = utils.contaminate(prism.gz(xp, yp, zp, model), 0.1) gz = prism.gz(xp, yp, zp, model) # Plot the data shape = (50, 50) mpl.figure() mpl.axis('scaled') mpl.contourf(yp, xp, gz, shape, 30, interp=True) mpl.colorbar() mpl.plot(yp, xp, '.k') mpl.xlabel('East (km)') mpl.ylabel('North (km)') mpl.m2km() mpl.show() return xp, yp, zp, gz, shape, model
fields = [prism.potential(xp, yp, zp, model), prism.gx(xp, yp, zp, model), prism.gy(xp, yp, zp, model), prism.gz(xp, yp, zp, model), prism.gxx(xp, yp, zp, model), prism.gxy(xp, yp, zp, model), prism.gxz(xp, yp, zp, model), prism.gyy(xp, yp, zp, model), prism.gyz(xp, yp, zp, model), prism.gzz(xp, yp, zp, model)] titles = ['potential', 'gx', 'gy', 'gz', 'gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] mpl.figure(figsize=(8, 9)) mpl.subplots_adjust(left=0.03, right=0.95, bottom=0.05, top=0.92, hspace=0.3) mpl.suptitle("Potential fields produced by a 3 prism model") for i, field in enumerate(fields): mpl.subplot(4, 3, i + 3) mpl.axis('scaled') mpl.title(titles[i]) levels = mpl.contourf(yp*0.001, xp*0.001, field, shape, 15) cb = mpl.colorbar() mpl.contour(yp*0.001, xp*0.001, field, shape, levels, clabel=False, linewidth=0.1) mpl.show() myv.figure() myv.prisms(model, prop='density') axes = myv.axes(myv.outline()) myv.wall_bottom(axes.axes.bounds, opacity=0.2) myv.wall_north(axes.axes.bounds) myv.show()
model = [ mesher.Prism(-4000, 0, -4000, -2000, 2000, 5000, {'density': 1200}), mesher.Prism(-1000, 1000, -1000, 1000, 1000, 7000, {'density': -800}), mesher.Prism(2000, 4000, 3000, 4000, 0, 2000, {'density': 600}) ] # Calculate on a scatter of points to show that migration doesn't need gridded # data xp, yp, zp = gridder.scatter((-6000, 6000, -6000, 6000), 1000, z=-10) gz = utils.contaminate(prism.gz(xp, yp, zp, model), 0.1) # Plot the data shape = (50, 50) mpl.figure() mpl.axis('scaled') mpl.contourf(yp, xp, gz, shape, 30, interp=True) mpl.colorbar() mpl.plot(yp, xp, '.k') mpl.xlabel('East (km)') mpl.ylabel('North (km)') mpl.m2km() mpl.show() mesh = imaging.migrate(xp, yp, zp, gz, 0, 10000, (30, 30, 30), power=0.8) # Plot the results myv.figure() myv.prisms(model, 'density', style='wireframe', linewidth=2) myv.prisms(mesh, 'density', edges=False) axes = myv.axes(myv.outline()) myv.wall_bottom(axes.axes.bounds) myv.wall_north(axes.axes.bounds)
shape = (100, 100) z0 = -500 x, y, z = gridder.regular(area, shape, z=z0) tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 1, seed=0) # Reduce to the pole using FFT. Since there is only induced magnetization, the # magnetization direction (sinc and sdec) is the same as the geomagnetic field pole = transform.reduce_to_pole(x, y, tf, shape, inc, dec, sinc=inc, sdec=dec) # Calculate the true value at the pole for comparison true = prism.tf(x, y, z, model, 90, 0, pmag=utils.ang2vec(10, 90, 0)) fig, axes = mpl.subplots(1, 3, figsize=(14, 4)) for ax in axes: ax.set_aspect('equal') mpl.sca(axes[0]) mpl.title("Original total field anomaly") mpl.contourf(y, x, tf, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.sca(axes[1]) mpl.title("True value at pole") mpl.contourf(y, x, true, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.sca(axes[2]) mpl.title("Reduced to the pole") mpl.contourf(y, x, pole, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.tight_layout() mpl.show()
from fatiando import mesher, gridder, utils from fatiando.gravmag import prism, transform from fatiando.vis import mpl model = [mesher.Prism(-100, 100, -100, 100, 0, 2000, {'magnetization': 10})] area = (-5000, 5000, -5000, 5000) shape = (100, 100) z0 = -500 x, y, z = gridder.regular(area, shape, z=z0) inc, dec = -30, 0 tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 0.001, percent=True) # Need to convert gz to SI units so that the result is also in SI total_grad_amp = transform.tga(x, y, utils.nt2si(tf), shape) mpl.figure() mpl.subplot(1, 2, 1) mpl.title("Original total field anomaly") mpl.axis('scaled') mpl.contourf(y, x, tf, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(orientation='horizontal').set_label('nT') mpl.m2km() mpl.subplot(1, 2, 2) mpl.title("Total Gradient Amplitude") mpl.axis('scaled') mpl.contourf(y, x, total_grad_amp, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(orientation='horizontal').set_label('nT/m') mpl.m2km() mpl.show()
from fatiando import mesher, gridder, utils from fatiando.gravmag import prism, fourier from fatiando.vis import mpl model = [mesher.Prism(-100,100,-100,100,0,2000,{'magnetization':10})] area = (-5000, 5000, -5000, 5000) shape = (100, 100) z0 = -500 xp, yp, zp = gridder.regular(area, shape, z=z0) inc, dec = -30, 0 tf = utils.contaminate(prism.tf(xp, yp, zp, model, inc, dec), 0.001, percent=True) # Need to convert gz to SI units so that the result is also in SI ansig = fourier.ansig(xp, yp, utils.nt2si(tf), shape) mpl.figure() mpl.subplot(1, 2, 1) mpl.title("Original total field anomaly") mpl.axis('scaled') mpl.contourf(yp, xp, tf, shape, 30) mpl.colorbar(orientation='horizontal') mpl.m2km() mpl.subplot(1, 2, 2) mpl.title("Analytic signal") mpl.axis('scaled') mpl.contourf(yp, xp, ansig, shape, 30) mpl.colorbar(orientation='horizontal') mpl.m2km() mpl.show()
gz_true = prism.gz(x, y, z, model) mpl.figure() mpl.suptitle('L-curve') mpl.title("Estimated regularization parameter: %g" % (solver.regul_param_)) solver.plot_lcurve() mpl.grid() # Plot the layer and the fit mpl.figure(figsize=(14, 4)) mpl.suptitle('Observed data (black) | Predicted by layer (red)') mpl.subplot(1, 3, 1) mpl.axis('scaled') mpl.title('Layer (kg.m^-3)') mpl.pcolor(layer.y, layer.x, layer.props['density'], layer.shape) mpl.colorbar().set_label(r'Density $kg.m^{-3}$') mpl.m2km() mpl.subplot(1, 3, 2) mpl.axis('scaled') mpl.title('Fit gz (mGal)') levels = mpl.contour(y1, x1, gz, shape, 15, color='k', interp=True) mpl.contour(y1, x1, solver.predicted()[0], shape, levels, color='r', interp=True) mpl.plot(y1, x1, 'xk', label='Data points') mpl.legend() mpl.m2km()
""" from fatiando import mesher, gridder, utils from fatiando.gravmag import prism, transform from fatiando.vis import mpl model = [mesher.Prism(-100, 100, -100, 100, 0, 2000, {'magnetization': 10})] area = (-5000, 5000, -5000, 5000) shape = (100, 100) z0 = -500 x, y, z = gridder.regular(area, shape, z=z0) inc, dec = -30, 0 tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 0.001, percent=True) # Need to convert gz to SI units so that the result is also in SI total_grad_amp = transform.tga(x, y, utils.nt2si(tf), shape) mpl.figure() mpl.subplot(1, 2, 1) mpl.title("Original total field anomaly") mpl.axis('scaled') mpl.contourf(y, x, tf, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(orientation='horizontal').set_label('nT') mpl.m2km() mpl.subplot(1, 2, 2) mpl.title("Total Gradient Amplitude") mpl.axis('scaled') mpl.contourf(y, x, total_grad_amp, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(orientation='horizontal').set_label('nT/m') mpl.m2km() mpl.show()
z0 = -500 x, y, z = gridder.regular(area, shape, z=z0) tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 1, seed=0) # Reduce to the pole using FFT. Since there is only induced magnetization, the # magnetization direction (sinc and sdec) is the same as the geomagnetic field pole = transform.reduce_to_pole(x, y, tf, shape, inc, dec, sinc=inc, sdec=dec) # Calculate the true value at the pole for comparison true = prism.tf(x, y, z, model, 90, 0, pmag=utils.ang2vec(10, 90, 0)) fig, axes = mpl.subplots(1, 3, figsize=(14, 4)) for ax in axes: ax.set_aspect('equal') mpl.sca(axes[0]) mpl.title("Original total field anomaly") mpl.contourf(y, x, tf, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.sca(axes[1]) mpl.title("True value at pole") mpl.contourf(y, x, true, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.sca(axes[2]) mpl.title("Reduced to the pole") mpl.contourf(y, x, pole, shape, 30, cmap=mpl.cm.RdBu_r) mpl.colorbar(pad=0).set_label('nT') mpl.m2km() mpl.tight_layout() mpl.show()
from fatiando import mesher, gridder, utils, gravmag from fatiando.vis import mpl prisms = [mesher.Prism(-100, 100, -100, 100, 0, 2000, {'magnetization': 10})] area = (-5000, 5000, -5000, 5000) shape = (100, 100) z0 = -500 xp, yp, zp = gridder.regular(area, shape, z=z0) inc, dec = -30, 0 tf = utils.contaminate(gravmag.prism.tf(xp, yp, zp, prisms, inc, dec), 0.001, percent=True) # Need to convert gz to SI units so that the result is also in SI ansig = gravmag.fourier.ansig(xp, yp, utils.nt2si(tf), shape) mpl.figure() mpl.subplot(1, 2, 1) mpl.title("Original total field anomaly") mpl.axis('scaled') mpl.contourf(yp, xp, tf, shape, 30) mpl.colorbar(orientation='horizontal') mpl.m2km() mpl.subplot(1, 2, 2) mpl.title("Analytic signal") mpl.axis('scaled') mpl.contourf(yp, xp, ansig, shape, 30) mpl.colorbar(orientation='horizontal') mpl.m2km() mpl.show()
gz = utils.contaminate(prism.gz(xp, yp, zp, model), 0.001) # Need to convert gz to SI units so that the result can be converted to Eotvos gxz = utils.si2eotvos(transform.derivx(xp, yp, utils.mgal2si(gz), shape)) gyz = utils.si2eotvos(transform.derivy(xp, yp, utils.mgal2si(gz), shape)) gzz = utils.si2eotvos(transform.derivz(xp, yp, utils.mgal2si(gz), shape)) gxz_true = prism.gxz(xp, yp, zp, model) gyz_true = prism.gyz(xp, yp, zp, model) gzz_true = prism.gzz(xp, yp, zp, model) mpl.figure() mpl.title("Original gravity anomaly") mpl.axis('scaled') mpl.contourf(xp, yp, gz, shape, 15) mpl.colorbar(shrink=0.7) mpl.m2km() mpl.figure(figsize=(14, 10)) mpl.subplots_adjust(top=0.95, left=0.05, right=0.95) mpl.subplot(2, 3, 1) mpl.title("x deriv (contour) + true (color map)") mpl.axis('scaled') levels = mpl.contourf(yp, xp, gxz_true, shape, 12) mpl.colorbar(shrink=0.7) mpl.contour(yp, xp, gxz, shape, 12, color='k') mpl.m2km() mpl.subplot(2, 3, 2) mpl.title("y deriv (contour) + true (color map)") mpl.axis('scaled') levels = mpl.contourf(yp, xp, gyz_true, shape, 12)
gz = utils.contaminate(prism.gz(x, y, z, model), 0.5, seed=0) height = 1000 # How much higher to go gzcontf = transform.upcontinue(x, y, gz, shape, height) # Compute the true value at the new height for comparison gztrue = prism.gz(x, y, z - height, model) args = dict(shape=shape, levels=20, cmap=mpl.cm.RdBu_r) fig, axes = mpl.subplots(1, 3, figsize=(12, 3.5)) axes = axes.ravel() mpl.sca(axes[0]) mpl.title("Original") mpl.axis('scaled') mpl.contourf(x, y, gz, **args) mpl.colorbar(pad=0).set_label('mGal') mpl.m2km() mpl.sca(axes[1]) mpl.title('True higher') mpl.axis('scaled') mpl.contourf(y, x, gztrue, **args) mpl.colorbar(pad=0).set_label('mGal') mpl.m2km() mpl.sca(axes[2]) mpl.title("Continued (Fourier)") mpl.axis('scaled') mpl.contourf(y, x, gzcontf, **args) mpl.colorbar(pad=0).set_label('mGal') mpl.m2km() mpl.tight_layout() mpl.show()
mpl.title('L-curve: triangle marks the best solution') tomo.plot_lcurve() print "Estimated regularization parameter: %g" % (tomo.regul_param_) # Calculate and print the standard deviation of the residuals # Should be close to the data error if the inversion was able to fit the data residuals = tomo.residuals() print "Assumed error: %g" % (error) print "Standard deviation of residuals: %g" % (np.std(residuals)) mpl.figure(figsize=(14, 5)) mpl.subplot(1, 2, 1) mpl.axis('scaled') mpl.title('Vp model') mpl.squaremesh(model, prop='vp', cmap=mpl.cm.seismic) cb = mpl.colorbar() cb.set_label('Velocity') mpl.points(src_loc, '*y', label="Sources") mpl.points(rec_loc, '^r', label="Receivers") mpl.legend(loc='lower left', shadow=True, numpoints=1, prop={'size': 10}) mpl.m2km() mpl.subplot(1, 2, 2) mpl.axis('scaled') mpl.title('Tomography result') mpl.squaremesh(mesh, prop='vp', vmin=4000, vmax=10000, cmap=mpl.cm.seismic) cb = mpl.colorbar() cb.set_label('Velocity') mpl.m2km() mpl.figure() mpl.grid() mpl.title('Residuals (data with %.4f s error)' % (error))
gz_true = prism.gz(x, y, z, model) mpl.figure() mpl.suptitle('L-curve') mpl.title("Estimated regularization parameter: %g" % (solver.regul_param_)) solver.plot_lcurve() mpl.grid() # Plot the layer and the fit mpl.figure(figsize=(14, 4)) mpl.suptitle('Observed data (black) | Predicted by layer (red)') mpl.subplot(1, 3, 1) mpl.axis('scaled') mpl.title('Layer (kg.m^-3)') mpl.pcolor(layer.y, layer.x, layer.props['density'], layer.shape) mpl.colorbar().set_label(r'Density $kg.m^{-3}$') mpl.m2km() mpl.subplot(1, 3, 2) mpl.axis('scaled') mpl.title('Fit gz (mGal)') levels = mpl.contour(y1, x1, gz, shape, 15, color='k', interp=True) mpl.contour(y1, x1, solver.predicted()[0], shape, levels, color='r', interp=True) mpl.plot(y1, x1, 'xk', label='Data points') mpl.legend() mpl.m2km() mpl.subplot(1, 3, 3) mpl.axis('scaled') mpl.title('Fit gzz (Eotvos)') levels = mpl.contour(y2, x2, gzz, shape, 10, color='k', interp=True) mpl.contour(y2, x2, solver.predicted()[1], shape, levels, color='r',
area = bounds[:4] axis = mpl.figure().gca() mpl.axis('scaled') model = [ mesher.PolygonalPrism( mpl.draw_polygon(area, axis, xy2ne=True), # Use only induced magnetization 0, 2000, {'magnetization':2})] # Calculate the effect shape = (100, 100) xp, yp, zp = gridder.regular(area, shape, z=-500) tf = polyprism.tf(xp, yp, zp, model, inc, dec) # and plot it mpl.figure() mpl.axis('scaled') mpl.title("Total field anomalyproduced by prism model (nT)") mpl.contourf(yp, xp, tf, shape, 20) mpl.colorbar() for p in model: mpl.polygon(p, '.-k', xy2ne=True) mpl.set_area(area) mpl.m2km() mpl.show() # Show the prisms myv.figure() myv.polyprisms(model, 'magnetization') myv.axes(myv.outline(bounds), ranges=[i*0.001 for i in bounds]) myv.wall_north(bounds) myv.wall_bottom(bounds) myv.show()
area = (lon.min(), lon.max(), lat.min(), lat.max()) # First, lets calculate the gravity disturbance (e.g., the free-air anomaly) # We'll do this using the closed form of the normal gravity for the WGS84 # ellipsoid gamma = normal_gravity.gamma_closed_form(lat, height) disturbance = gravity - gamma # Now we can remove the effect of the Bouguer plate to obtain the Bouguer # anomaly. We'll use the standard densities of 2.67 g.cm^-3 for crust and 1.04 # g.cm^-3 for water. bouguer = disturbance - normal_gravity.bouguer_plate(topo) mpl.figure(figsize=(14, 3.5)) bm = mpl.basemap(area, projection='merc') mpl.subplot(131) mpl.title('Gravity (mGal)') mpl.contourf(lon, lat, gravity, shape, 60, cmap=mpl.cm.Reds, basemap=bm) mpl.colorbar(pad=0) mpl.subplot(132) mpl.title('Gravity disturbance (mGal)') amp = np.abs(disturbance).max() mpl.contourf(lon, lat, disturbance, shape, 60, cmap=mpl.cm.RdBu_r, basemap=bm, vmin=-amp, vmax=amp) mpl.colorbar(pad=0) mpl.subplot(133) mpl.title('Bouguer anomaly (mGal)') mpl.contourf(lon, lat, bouguer, shape, 60, cmap=mpl.cm.Reds, basemap=bm) mpl.colorbar(pad=0) mpl.show()