def plot_synth(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[-3:] with open('model.pickle') as f: model = pickle.load(f) for comp in tensor: shape = (51, 51) pyplot.figure(figsize=(5, 4)) pyplot.axis('scaled') levels = vis.contourf(y * 0.001, x * 0.001, comp, shape, 8) vis.contour(y * 0.001, x * 0.001, comp, shape, levels) pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show() extent = [0, 5000, 0, 5000, 0, 1500] vis.mayavi_figure() vis.prisms3D(model, extract('density', model)) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i * 0.001 for i in extent], fmt='%.1f', nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_result(): data = numpy.loadtxt("data.txt", unpack=True) x, y, z, topo = data[0:4] tensor = data[-3:] # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results["predicted"] shape = (60, 100) for true, pred in zip(tensor, predicted): pyplot.figure() pyplot.axis("scaled") levels = vis.contourf(y * 0.001, x * 0.001, true, shape, 12, interpolate=True) pyplot.colorbar() vis.contour(y * 0.001, x * 0.001, pred, shape, levels, color="k", interpolate=True) pyplot.xlabel("Horizontal coordinate y (km)") pyplot.ylabel("Horizontal coordinate x (km)") pyplot.show() extent = [x.min(), x.max(), y.min(), y.max(), -topo.max(), -400] # density_model = vfilter(900, 1200, 'density', results['mesh']) seeds = [results["mesh"][s] for s in results["seeds"]] vis.mayavi_figure() vis.prisms3D(seeds, extract("density", seeds), vmin=0) # vis.prisms3D(density_model, extract('density', density_model), vmin=0) vis.prisms3D(results["mesh"], results["mesh"].props["density"], vmin=0) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i * 0.001 for i in extent], fmt="%.1f", nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_synth(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[3:] with open('model.pickle') as f: model = pickle.load(f) for comp in tensor: shape = (26, 26) pyplot.figure(figsize=(5,4)) pyplot.axis('scaled') levels = vis.contourf(y*0.001, x*0.001, comp, shape, 8) vis.contour(y*0.001, x*0.001, comp, shape, levels) pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show() extent = [0, 5000, 0, 5000, 0, 1000] vis.mayavi_figure() vis.prisms3D(model, extract('density', model)) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i*0.001 for i in extent], fmt='%.1f', nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_data(): data = numpy.loadtxt('data.txt', unpack=True) predicted = numpy.loadtxt('predicted.txt', unpack=True, usecols=[3, 4, 5]) xs, ys = numpy.loadtxt('seeds.txt', unpack=True, usecols=[0, 1]) x, y, z = data[0:3] tensor = data[-3:] shape = (60, 100) for comp, pred in zip(tensor, predicted): pyplot.figure(figsize=(4, 4)) pyplot.subplots_adjust(bottom=0.2) pyplot.axis('scaled') levels = vis.contourf(y * 0.001, x * 0.001, comp, shape, 8, interpolate=True) pyplot.colorbar() vis.contour(y * 0.001, x * 0.001, pred, shape, levels, interpolate=True) pyplot.plot(ys * 0.001, xs * 0.001, '.w') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show()
def plot_result(): data = numpy.loadtxt('data.txt', unpack=True) x, y, z, topo = data[0:4] tensor = data[-3:] # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (60, 100) for true, pred in zip(tensor, predicted): pyplot.figure() pyplot.axis('scaled') levels = vis.contourf(y * 0.001, x * 0.001, true, shape, 12, interpolate=True) pyplot.colorbar() vis.contour(y * 0.001, x * 0.001, pred, shape, levels, color='k', interpolate=True) pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show() extent = [x.min(), x.max(), y.min(), y.max(), -topo.max(), -400] #density_model = vfilter(900, 1200, 'density', results['mesh']) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(seeds, extract('density', seeds), vmin=0) #vis.prisms3D(density_model, extract('density', density_model), vmin=0) vis.prisms3D(results['mesh'], results['mesh'].props['density'], vmin=0) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i * 0.001 for i in extent], fmt='%.1f', nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (26, 26) names = ['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] i = 0 for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(3.33, 4)) pyplot.axis('scaled') levels = vis.contourf(y * 0.001, x * 0.001, true, shape, 8) cb = pyplot.colorbar(orientation='horizontal', shrink=0.95) cb.set_ticks([l for j, l in enumerate(levels) if j % 2 != 0]) vis.contour(y * 0.001, x * 0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.savefig('.'.join([names[i], 'pdf'])) i += 1 pyplot.show() extent = [0, 5000, 0, 5000, 0, 1000] density_model = vfilter(-2000, -1, 'density', results['mesh']) density_model.extend(vfilter(1, 2000, 'density', results['mesh'])) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds)) vis.prisms3D(density_model, extract('density', density_model)) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i * 0.001 for i in extent], fmt='%.1f', nlabels=3) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_data(): data = numpy.loadtxt("data.txt", unpack=True) predicted = numpy.loadtxt("predicted.txt", unpack=True, usecols=[3, 4, 5]) xs, ys = numpy.loadtxt("seeds.txt", unpack=True, usecols=[0, 1]) x, y, z = data[0:3] tensor = data[-3:] shape = (60, 100) for comp, pred in zip(tensor, predicted): pyplot.figure(figsize=(4, 4)) pyplot.subplots_adjust(bottom=0.2) pyplot.axis("scaled") levels = vis.contourf(y * 0.001, x * 0.001, comp, shape, 8, interpolate=True) pyplot.colorbar() vis.contour(y * 0.001, x * 0.001, pred, shape, levels, interpolate=True) pyplot.plot(ys * 0.001, xs * 0.001, ".w") pyplot.xlabel("Horizontal coordinate y (km)") pyplot.ylabel("Horizontal coordinate x (km)") pyplot.show()
def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (26, 26) names = ['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] i = 0 for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(3.33,4)) pyplot.axis('scaled') levels = vis.contourf(y*0.001, x*0.001, true, shape, 8) cb = pyplot.colorbar(orientation='horizontal', shrink=0.95) cb.set_ticks([l for j, l in enumerate(levels) if j%2 != 0]) vis.contour(y*0.001, x*0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.savefig('.'.join([names[i], 'pdf'])) i += 1 pyplot.show() extent = [0, 5000, 0, 5000, 0, 1000] density_model = vfilter(-2000, -1, 'density', results['mesh']) density_model.extend(vfilter(1, 2000, 'density', results['mesh'])) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds)) vis.prisms3D(density_model, extract('density', density_model)) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i*0.001 for i in extent], fmt='%.1f', nlabels=3) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[-3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (51, 51) for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(5, 4)) pyplot.axis('scaled') levels = vis.contourf(y * 0.001, x * 0.001, true, shape, 8) pyplot.colorbar() vis.contour(y * 0.001, x * 0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show() extent = [0, 5000, 0, 5000, 0, 1500] density_model = vfilter(1100, 1200, 'density', results['mesh']) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds), vmin=0) vis.prisms3D(density_model, extract('density', density_model), vmin=0) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i * 0.001 for i in extent], fmt='%.1f', nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[-3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (51, 51) for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(5,4)) pyplot.axis('scaled') levels = vis.contourf(y*0.001, x*0.001, true, shape, 8) pyplot.colorbar() vis.contour(y*0.001, x*0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show() extent = [0, 5000, 0, 5000, 0, 1500] density_model = vfilter(1100, 1200, 'density', results['mesh']) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds), vmin=0) vis.prisms3D(density_model, extract('density', density_model), vmin=0) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i*0.001 for i in extent], fmt='%.1f', nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
#pylab.savefig("adjustment_%s.pdf" % (field)) pylab.legend(loc='lower left', prop={'size':9}, shadow=True) #pylab.savefig("comparison_raw.pdf") pylab.figure(figsize=(16,8)) pylab.subplots_adjust(wspace=0.4, hspace=0.3) for i, field in enumerate(['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz']): if field in data: pylab.subplot(2, 3, i + 1) pylab.title(field) pylab.axis('scaled') levels = vis.contourf(data[field], 10) vis.contourf(adjusted[field], levels) cb = pylab.colorbar(shrink=0.9) cb.set_label(r'$E\"otv\"os$', fontsize=14) pylab.xlabel('X [m]') pylab.ylabel('Y [m]') #pylab.savefig("adjusted_raw.pdf") pylab.figure(figsize=(16,8)) pylab.subplots_adjust(wspace=0.4, hspace=0.3) for i, field in enumerate(['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz']): if field in data:
x1=0, x2=5000, y1=0, y2=5000, nx=50, ny=50, height=150, field=field) data['value'], error = utils.contaminate(data['value'], stddev=error, percent=False, return_stddev=True) data['error'] = error * numpy.ones(len(data['value'])) io.dump('%s_data.txt' % (field), data) pylab.subplot(2, 3, i + 1) pylab.axis('scaled') pylab.title(field) vis.contourf(data, 10) vis.contourf(data, 10) cb = pylab.colorbar(shrink=0.9) cb.set_label(r'$E\"otv\"os$', fontsize=14) pylab.xlabel('X [m]') pylab.ylabel('Y [m]') pylab.savefig("data_ftg_raw.pdf") pylab.show()
nx=25, ny=25, height=150, field=field) data[field]['value'], error = utils.contaminate(data[field]['value'], stddev=error, percent=False, return_stddev=True) data[field]['error'] = error*numpy.ones(len(data[field]['value'])) io.dump('%s.txt' % (field), data[field]) # Plot the data pylab.figure() pylab.suptitle(r'Synthetic FTG data with %g $E\"otv\"os$ noise' % (error)) for i, field in enumerate(fields): pylab.subplot(1, 3, i + 1) pylab.axis('scaled') pylab.title(field) vis.contourf(data[field], 10, xkey='y', ykey='x', nx=31, ny=31) cb = pylab.colorbar() cb.set_label(r'$E\"otv\"os$') pylab.xlabel("Easting [m]") pylab.ylabel("Northing [m]") pylab.savefig("data_raw.pdf") # RUN THE INVERSION ################################################################################ # Generate a model space mesh x1, x2 = 0, 5000 y1, y2 = 0, 5000 z1, z2 = 0, 1500 mesh = fatiando.mesh.prism_mesh(x1=x1, x2=x2, y1=y1, y2=y2, z1=z1, z2=z2, nx=50, ny=50, nz=15)
contour2y = 0.001*numpy.array(contour2y) seed1x = 0.001*seed1x seed1y = 0.001*seed1y seed2x = 0.001*seed2x seed2y = 0.001*seed2y data['x'] = 0.001*data['x'] data['y'] = 0.001*data['y'] adjusted['x'] = 0.001*adjusted['x'] adjusted['y'] = 0.001*adjusted['y'] matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Plot the data pylab.figure() pylab.axis('scaled') vis.contourf(data, levels=15, xkey='y', ykey='x', nx=25, ny=50) cb = pylab.colorbar() cb.set_label("mGal") pylab.plot(contour1y, contour1x, '-k', linewidth=2) pylab.plot(contour2y, contour2x, '-k', linewidth=2) size = 4 alpha = 1 pylab.plot(seed1y, seed1x, 'ob', markersize=size, alpha=alpha) pylab.plot(seed2y, seed2x, 'or', markersize=size, alpha=alpha) #cb = pylab.colorbar() #cb.set_label('mGal') pylab.xlabel("Easting (km)") pylab.ylabel("Northing (km)") #pylab.savefig("data_raw.pdf") # Make a mesh for the seeds to plot them
contour2y = 0.001 * numpy.array(contour2y) seed1x = 0.001 * seed1x seed1y = 0.001 * seed1y seed2x = 0.001 * seed2x seed2y = 0.001 * seed2y data['x'] = 0.001 * data['x'] data['y'] = 0.001 * data['y'] adjusted['x'] = 0.001 * adjusted['x'] adjusted['y'] = 0.001 * adjusted['y'] matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Plot the data pylab.figure() pylab.axis('scaled') vis.contourf(data, levels=15, xkey='y', ykey='x', nx=25, ny=50) cb = pylab.colorbar() cb.set_label("mGal") pylab.plot(contour1y, contour1x, '-k', linewidth=2) pylab.plot(contour2y, contour2x, '-k', linewidth=2) size = 4 alpha = 1 pylab.plot(seed1y, seed1x, 'ob', markersize=size, alpha=alpha) pylab.plot(seed2y, seed2x, 'or', markersize=size, alpha=alpha) #cb = pylab.colorbar() #cb.set_label('mGal') pylab.xlabel("Easting (km)") pylab.ylabel("Northing (km)") #pylab.savefig("data_raw.pdf") # Make a mesh for the seeds to plot them
import cPickle as pickle import numpy from fatiando import vis from fatiando.mesher.volume import extract, vfilter pyplot = vis.pyplot # Load the inversion results name = sys.argv[1].split('.')[0] with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] # Load synthetic data data = numpy.loadtxt(sys.argv[2], unpack=True) x, y, z = data[0:3] tensor = data[3:] fdir = 'figs' shape = (51, 51) pyplot.figure(figsize=(3.33,4)) pyplot.axis('scaled') levels = vis.contourf(y*0.001, x*0.001, tensor[-1], shape, 6) pyplot.colorbar(orientation='horizontal', shrink=0.8) vis.contour(y*0.001, x*0.001, predicted[-1], shape, levels, color='k', style='dashed', linewidth=1.0) pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.savefig('.'.join([name, 'pdf'])) #pyplot.show()
pylab.figure(figsize=(15,10)) pylab.subplots_adjust(hspace=0.4, wspace=0.3) levels = 12 angle = 40 nx, ny = 40, 60 for i, field in enumerate(['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz']): data = io.load('%s.txt' % (field)) ax = pylab.subplot(2, 3, i + 1) pylab.title(field) pylab.axis('scaled') #pylab.plot(data['x'], data['y'], '.k') vis.contourf(data, levels, nx=nx, ny=ny) vis.contourf(data, levels, nx=nx, ny=ny) cb = pylab.colorbar() cb.set_label(r'$E\"otv\"os$', fontsize=14) labels = ax.get_xticklabels() for label in labels: label.set_rotation(angle) pylab.xlabel('Northing [m]') pylab.ylabel('Easting [m]') pylab.savefig("ftg_data_raw.pdf") datatopo = io.load_topo('topo.txt') pylab.figure(figsize=(8,10)) pylab.title("Topography [m]")
pylab.suptitle(r'Synthetic FTG data with %g $E\"otv\"os$ noise' % (error), fontsize=16) pylab.subplots_adjust(wspace=0.4, hspace=0.3) for i, field in enumerate(['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz']): data = synthetic.from_prisms(prisms, x1=0, x2=5000, y1=0, y2=5000, nx=50, ny=50, height=150, field=field) data['value'], error = utils.contaminate(data['value'], stddev=error, percent=False, return_stddev=True) data['error'] = error*numpy.ones(len(data['value'])) io.dump('%s_data.txt' % (field), data) pylab.subplot(2, 3, i + 1) pylab.axis('scaled') pylab.title(field) vis.contourf(data, 10) vis.contourf(data, 10) cb = pylab.colorbar(shrink=0.9) cb.set_label(r'$E\"otv\"os$', fontsize=14) pylab.xlabel('X [m]') pylab.ylabel('Y [m]') pylab.savefig("data_ftg_raw.pdf") pylab.show()
spoints.append((11000, 16900, -900)) sdens.append(-400) spoints.append((11920, 16070, -950)) sdens.append(-400) spoints.append((11670, 15225, -900)) sdens.append(-400) seeds = [gplant.get_seed(p, dens, mesh) for p, dens in zip(spoints, sdens)] # Make a mesh for the seeds to plot them seed_mesh = numpy.array([seed['cell'] for seed in seeds]) # Show the seeds before starting pylab.figure() pylab.axis('scaled') l = vis.contourf(data['gzz'], 10, nx=40, ny=60) vis.contour(data['gzz'], l, nx=40, ny=60) for p in spoints: pylab.plot(p[0], p[1], '*k', markersize=9) labels = pylab.gca().get_xticklabels() for label in labels: label.set_rotation(30) pylab.savefig('seeds.pdf') pylab.xlabel('Northing [m]') pylab.ylabel('Easting [m]') pylab.show() fig = mlab.figure() fig.scene.background = (1, 1, 1) fig.scene.camera.yaw(230)
pylab.figure(figsize=(15, 10)) pylab.subplots_adjust(hspace=0.4, wspace=0.3) levels = 12 angle = 40 nx, ny = 40, 60 for i, field in enumerate(['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz']): data = io.load('%s.txt' % (field)) ax = pylab.subplot(2, 3, i + 1) pylab.title(field) pylab.axis('scaled') #pylab.plot(data['x'], data['y'], '.k') vis.contourf(data, levels, nx=nx, ny=ny) vis.contourf(data, levels, nx=nx, ny=ny) cb = pylab.colorbar() cb.set_label(r'$E\"otv\"os$', fontsize=14) labels = ax.get_xticklabels() for label in labels: label.set_rotation(angle) pylab.xlabel('Northing [m]') pylab.ylabel('Easting [m]') pylab.savefig("ftg_data_raw.pdf") datatopo = io.load_topo('topo.txt') pylab.figure(figsize=(8, 10)) pylab.title("Topography [m]")
def xy2ne(g): g['x'], g['y'] = g['y'], g['x'] return g xy2ne(data) xy2ne(adj) pylab.figure() pylab.axis('scaled') levels = vis.contour(data, levels=8, color='b', label="Observed") vis.contour(adj, levels=levels, color='r', label="Predicted") pylab.xlabel("E (km)") pylab.ylabel("N (km)") pylab.figure() pylab.axis('scaled') levels = vis.contourf(data, levels=8) vis.contour(data, levels=levels, color='k') pylab.xlabel("E (km)") pylab.ylabel("N (km)") pylab.figure() pylab.axis('scaled') levels = vis.contourf(adj, levels=8) vis.contour(adj, levels=levels, color='k') pylab.xlabel("E (km)") pylab.ylabel("N (km)") pylab.show()
field=field) data[field]['value'], error = utils.contaminate(data[field]['value'], stddev=error, percent=False, return_stddev=True) data[field]['error'] = error * numpy.ones(len(data[field]['value'])) io.dump('%s.txt' % (field), data[field]) # Plot the data pylab.figure() pylab.suptitle(r'Synthetic FTG data with %g $E\"otv\"os$ noise' % (error)) for i, field in enumerate(fields): pylab.subplot(1, 3, i + 1) pylab.axis('scaled') pylab.title(field) vis.contourf(data[field], 10, xkey='y', ykey='x', nx=31, ny=31) cb = pylab.colorbar() cb.set_label(r'$E\"otv\"os$') pylab.xlabel("Easting [m]") pylab.ylabel("Northing [m]") pylab.savefig("data_raw.pdf") # RUN THE INVERSION ################################################################################ # Generate a model space mesh x1, x2 = 0, 5000 y1, y2 = 0, 5000 z1, z2 = 0, 1500 mesh = fatiando.mesh.prism_mesh(x1=x1, x2=x2, y1=y1,
#pylab.savefig("adjustment_%s.pdf" % (field)) pylab.legend(loc='lower left', prop={'size': 9}, shadow=True) #pylab.savefig("comparison_raw.pdf") pylab.figure(figsize=(16, 8)) pylab.subplots_adjust(wspace=0.4, hspace=0.3) for i, field in enumerate(['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz']): if field in data: pylab.subplot(2, 3, i + 1) pylab.title(field) pylab.axis('scaled') levels = vis.contourf(data[field], 10) vis.contourf(adjusted[field], levels) cb = pylab.colorbar(shrink=0.9) cb.set_label(r'$E\"otv\"os$', fontsize=14) pylab.xlabel('X [m]') pylab.ylabel('Y [m]') #pylab.savefig("adjusted_raw.pdf") pylab.figure(figsize=(16, 8)) pylab.subplots_adjust(wspace=0.4, hspace=0.3) for i, field in enumerate(['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz']): if field in data:
seedpoints.append(((2001, 2751, 301), 1500)) seedpoints.append(((2501, 2751, 301), 1500)) seedpoints.append(((3001, 2751, 301), 1500)) seedpoints.append(((3501, 2751, 301), 1500)) seedpoints.append(((4001, 2751, 301), 1500)) seeds = [gplant.get_seed(point, dens, mesh) for point, dens in seedpoints] # Make a mesh for the seeds to plot them seed_mesh = numpy.array([seed['cell'] for seed in seeds]) # Plot the seeds ontop of the data pylab.figure() #pylab.title() pylab.axis('scaled') vis.contourf(data['gzz'], 10) cb = pylab.colorbar() cb.set_label(r'$E\"otv\"os$', fontsize=14) xs = [] ys = [] for p, dens in seedpoints: xs.append(p[0]) ys.append(p[1]) pylab.plot(xs, ys, '*k', markersize=9, label='Seeds') pylab.xlabel('X [m]') pylab.ylabel('Y [m]') pylab.legend(shadow=True, loc='lower right') pylab.savefig('seeds_raw.pdf') #pylab.show()