コード例 #1
0
ファイル: f8.py プロジェクト: Cydia2018/fast-cma-es
def obj_f_c(X):
    try:
        y = np.asarray([0.4655, 0., 0.])
        array_type = ct.c_double * y.size
        n = len(X)
        for i in range(n):
            if X[i] == 0:
                continue
            #  bang-bang type switches starting with w(t) = 1.
            w = (i + 1) % 2
            ry = integrateF8_C(array_type(*y), w, X[i], 0.1)
            y = np.array(np.fromiter(ry, dtype=np.float64, count=y.size))
            freemem(ry)

        val0 = np.sum(X)
        penalty = np.sum(np.abs(y))
        # estimated fixed weight for penalty
        val = 0.1 * val0 + penalty
        global f_evals
        f_evals.value += 1
        global best_f
        if best_f.value > val:
            best_f.value = val
            # monitor value and constraint violation
            print(
                "val = {0:.8f} penalty = {1:.8f} f(xmin) = {2:.5f} nfev = {3}".
                format(val0, penalty, val, f_evals.value))
        return val
    except Exception as e:
        return 1E10  # fail
コード例 #2
0
ファイル: decpp.py プロジェクト: Cydia2018/fast-cma-es
def minimize(fun,
             dim=None,
             bounds=None,
             popsize=None,
             max_evaluations=100000,
             stop_fitness=None,
             keep=200,
             f=0.5,
             cr=0.9,
             rg=Generator(MT19937()),
             runid=0):
    """Minimization of a scalar function of one or more variables using a 
    C++ Differential Evolution implementation called via ctypes.
     
    Parameters
    ----------
    fun : callable
        The objective function to be minimized.
            ``fun(x, *args) -> float``
        where ``x`` is an 1-D array with shape (n,) and ``args``
        is a tuple of the fixed parameters needed to completely
        specify the function.
    dim : int
        dimension of the argument of the objective function
    bounds : sequence or `Bounds`, optional
        Bounds on variables. There are two ways to specify the bounds:
            1. Instance of the `scipy.Bounds` class.
            2. Sequence of ``(min, max)`` pairs for each element in `x`. None
               is used to specify no bound.
    popsize : int, optional
        Population size.
    max_evaluations : int, optional
        Forced termination after ``max_evaluations`` function evaluations.
    stop_fitness : float, optional 
         Limit for fitness value. If reached minimize terminates.
    keep = float, optional
        changes the reinitialization probability of individuals based on their age. Higher value
        means lower probablity of reinitialization.
    f = float, optional
        The mutation constant. In the literature this is also known as differential weight, 
        being denoted by F. Should be in the range [0, 2].
    cr = float, optional
        The recombination constant. Should be in the range [0, 1]. 
        In the literature this is also known as the crossover probability.     
    rg = numpy.random.Generator, optional
        Random generator for creating random guesses.
    runid : int, optional
        id used to identify the run for debugging / logging. 
            
    Returns
    -------
    res : scipy.OptimizeResult
        The optimization result is represented as an ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, 
        ``fun`` the best function value, 
        ``nfev`` the number of function evaluations,
        ``nit`` the number of iterations,
        ``success`` a Boolean flag indicating if the optimizer exited successfully. """

    n, lower, upper = de._check_bounds(bounds, dim)
    if popsize is None:
        popsize = 31
    if lower is None:
        lower = [0] * n
        upper = [0] * n
    if stop_fitness is None:
        stop_fitness = math.inf
    array_type = ct.c_double * n
    c_callback = call_back_type(callback(fun))
    seed = int(rg.uniform(0, 2**32 - 1))
    try:
        res = optimizeDE_C(runid, c_callback, n, seed, array_type(*lower),
                           array_type(*upper), max_evaluations, keep,
                           stop_fitness, popsize, f, cr)
        x = np.array(np.fromiter(res, dtype=np.float64, count=n))
        val = res[n]
        evals = int(res[n + 1])
        iterations = int(res[n + 2])
        stop = int(res[n + 3])
        freemem(res)
        return OptimizeResult(x=x,
                              fun=val,
                              nfev=evals,
                              nit=iterations,
                              status=stop,
                              success=True)
    except Exception as ex:
        return OptimizeResult(x=None,
                              fun=sys.float_info.max,
                              nfev=0,
                              nit=0,
                              status=-1,
                              success=False)
コード例 #3
0
ファイル: gcldecpp.py プロジェクト: Cydia2018/fast-cma-es
def minimize(fun, 
             dim = None,
             bounds = None, 
             popsize = None, 
             max_evaluations = 100000, 
             stop_fitness = None, 
             pbest = 0.7,
             f0 = 0.0,
             cr0 = 0.0,
             rg = Generator(MT19937()),
             runid=0,
             workers = None):  
     
    """Minimization of a scalar function of one or more variables using a 
    C++ GCL Differential Evolution implementation called via ctypes.
     
    Parameters
    ----------
    fun : callable
        The objective function to be minimized.
            ``fun(x, *args) -> float``
        where ``x`` is an 1-D array with shape (n,) and ``args``
        is a tuple of the fixed parameters needed to completely
        specify the function.
    dim : int
        dimension of the argument of the objective function
    bounds : sequence or `Bounds`
        Bounds on variables. There are two ways to specify the bounds:
            1. Instance of the `scipy.Bounds` class.
            2. Sequence of ``(min, max)`` pairs for each element in `x`.
    popsize : int, optional
        Population size.
    max_evaluations : int, optional
        Forced termination after ``max_evaluations`` function evaluations.
    stop_fitness : float, optional 
         Limit for fitness value. If reached minimize terminates.
    pbest = float, optional
        use low value 0 < pbest <= 1 to narrow search.
    f0 = float, optional
        The initial mutation constant. In the literature this is also known as differential weight, 
        being denoted by F. Should be in the range [0, 2].
    cr0 = float, optional
        The initial recombination constant. Should be in the range [0, 1]. 
        In the literature this is also known as the crossover probability.     
    rg = numpy.random.Generator, optional
        Random generator for creating random guesses.
    runid : int, optional
        id used to identify the run for debugging / logging. 
    workers : int or None, optional
        If not workers is None, function evaluation is performed in parallel for the whole population. 
        Useful for costly objective functions but is deactivated for parallel retry.      
 
           
    Returns
    -------
    res : scipy.OptimizeResult
        The optimization result is represented as an ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, 
        ``fun`` the best function value, 
        ``nfev`` the number of function evaluations,
        ``nit`` the number of iterations,
        ``success`` a Boolean flag indicating if the optimizer exited successfully. """
                
    n, lower, upper = de._check_bounds(bounds, dim)
    if popsize is None:
        popsize = int(n*8.5+150)
    if lower is None:
        lower = [0]*n
        upper = [0]*n
    if stop_fitness is None:
        stop_fitness = math.inf   
    parfun = None if workers is None else parallel(fun, workers)
    array_type = ct.c_double * n   
    c_callback_par = call_back_par(callback_par(fun, parfun))
    seed = int(rg.uniform(0, 2**32 - 1))
    try:
        res = optimizeGCLDE_C(runid, c_callback_par, n, seed,
                           array_type(*lower), array_type(*upper), 
                           max_evaluations, pbest, stop_fitness,  
                           popsize, f0, cr0)
        x = np.array(np.fromiter(res, dtype=np.float64, count=n))
        val = res[n]
        evals = int(res[n+1])
        iterations = int(res[n+2])
        stop = int(res[n+3])
        freemem(res)
        if not parfun is None:
            parfun.stop() # stop all parallel evaluation processes
        return OptimizeResult(x=x, fun=val, nfev=evals, nit=iterations, status=stop, success=True)
    except Exception as ex:
        if not workers is None:
            fun.stop() # stop all parallel evaluation processes
        return OptimizeResult(x=None, fun=sys.float_info.max, nfev=0, nit=0, status=-1, success=False)  
コード例 #4
0
def minimize(fun,
             bounds=None,
             x0=None,
             input_sigma=0.166,
             popsize=0,
             max_evaluations=100000,
             stop_fittness=None,
             rg=Generator(MT19937()),
             runid=0):
    """Minimization of a scalar function of one or more variables using a 
    C++ SCMA implementation called via ctypes.
     
    Parameters
    ----------
    fun : callable
        The objective function to be minimized.
            ``fun(x, *args) -> float``
        where ``x`` is an 1-D array with shape (n,) and ``args``
        is a tuple of the fixed parameters needed to completely
        specify the function.
    bounds : sequence or `Bounds`, optional
        Bounds on variables. There are two ways to specify the bounds:
            1. Instance of the `scipy.Bounds` class.
            2. Sequence of ``(min, max)`` pairs for each element in `x`. None
               is used to specify no bound.
    x0 : ndarray, shape (n,)
        Initial guess. Array of real elements of size (n,),
        where 'n' is the number of independent variables.  
    input_sigma : ndarray, shape (n,) or scalar
        Initial step size for each dimension.
    popsize = int, optional
        CMA-ES population size.
    max_evaluations : int, optional
        Forced termination after ``max_evaluations`` function evaluations.
    stop_fittness : float, optional 
         Limit for fitness value. If reached minimize terminates.
    rg = numpy.random.Generator, optional
        Random generator for creating random guesses.
    runid : int, optional
        id used to identify the run for debugging / logging. 
           
    Returns
    -------
    res : scipy.OptimizeResult
        The optimization result is represented as an ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, 
        ``fun`` the best function value, 
        ``nfev`` the number of function evaluations,
        ``nit`` the number of CMA-ES iterations, 
        ``status`` the stopping critera and
        ``success`` a Boolean flag indicating if the optimizer exited successfully. """

    lower, upper, guess = _check_bounds(bounds, x0, rg)
    n = guess.size
    if lower is None:
        lower = [0] * n
        upper = [0] * n
    if np.ndim(input_sigma) == 0:
        input_sigma = [input_sigma] * n
    if stop_fittness is None:
        stop_fittness = -math.inf
    array_type = ct.c_double * n
    c_callback = call_back_type(callback(fun))
    try:
        res = optimizeCsma_C(runid, c_callback, n,
                             int(rg.uniform(0, 2**32 - 1)), array_type(*guess),
                             array_type(*lower), array_type(*upper),
                             array_type(*input_sigma), max_evaluations,
                             stop_fittness, popsize)

        x = np.array(np.fromiter(res, dtype=np.float64, count=n))
        val = res[n]
        evals = int(res[n + 1])
        iterations = int(res[n + 2])
        stop = int(res[n + 3])
        freemem(res)
        return OptimizeResult(x=x,
                              fun=val,
                              nfev=evals,
                              nit=iterations,
                              status=stop,
                              success=True)
    except Exception as ex:
        return OptimizeResult(x=None,
                              fun=sys.float_info.max,
                              nfev=0,
                              nit=0,
                              status=-1,
                              success=False)
コード例 #5
0
ファイル: hhcpp.py プロジェクト: Cydia2018/fast-cma-es
def minimize(fun,
             dim,
             bounds=None,
             popsize=None,
             max_evaluations=100000,
             stop_fitness=None,
             rg=Generator(MT19937()),
             runid=0):
    """Minimization of a scalar function of one or more variables using a 
    C++ Harris hawks implementation called via ctypes.
     
    Parameters
    ----------
    fun : callable
        The objective function to be minimized.
            ``fun(x, *args) -> float``
        where ``x`` is an 1-D array with shape (n,) and ``args``
        is a tuple of the fixed parameters needed to completely
        specify the function.
    dim : int
        dimension of the argument of the objective function
    bounds : sequence or `Bounds`, optional
        Bounds on variables. There are two ways to specify the bounds:
            1. Instance of the `scipy.Bounds` class.
            2. Sequence of ``(min, max)`` pairs for each element in `x`. None
               is used to specify no bound.
    max_evaluations : int, optional
        Forced termination after ``max_evaluations`` function evaluations.
    stop_fitness : float, optional 
         Limit for fitness value. If reached minimize terminates.
    rg = numpy.random.Generator, optional
        Random generator for creating random guesses.
    runid : int, optional
        id used to identify the run for debugging / logging. 
            
    Returns
    -------
    res : scipy.OptimizeResult
        The optimization result is represented as an ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, 
        ``fun`` the best function value, 
        ``nfev`` the number of function evaluations,
        ``nit`` the number of iterations,
        ``success`` a Boolean flag indicating if the optimizer exited successfully. """

    lower = np.asarray(bounds.lb)
    upper = np.asarray(bounds.ub)
    n = dim
    if popsize is None:
        popsize = 31
    if lower is None:
        lower = [0] * n
        upper = [0] * n
    if stop_fitness is None:
        stop_fitness = math.inf
    array_type = ct.c_double * n
    c_callback = call_back_type(callback(fun))
    seed = int(rg.uniform(0, 2**32 - 1))
    try:
        res = optimizeHH_C(runid, c_callback, n, seed, array_type(*lower),
                           array_type(*upper), max_evaluations, stop_fitness,
                           popsize)
        x = np.array(np.fromiter(res, dtype=np.float64, count=n))
        val = res[n]
        evals = int(res[n + 1])
        iterations = int(res[n + 2])
        stop = int(res[n + 3])
        freemem(res)
        return OptimizeResult(x=x,
                              fun=val,
                              nfev=evals,
                              nit=iterations,
                              status=stop,
                              success=True)
    except Exception as ex:
        return OptimizeResult(x=None,
                              fun=sys.float_info.max,
                              nfev=0,
                              nit=0,
                              status=-1,
                              success=False)