コード例 #1
0
def load_align():
    thresh = config.thresh
    min_face_size = config.min_face
    stride = config.stride
    test_mode = config.test_mode
    detectors = [None, None, None]
    # 模型放置位置
    model_path = [
        '../align/model/PNet/', '../align/model/RNet/', '../align/model/ONet'
    ]
    batch_size = config.batches
    PNet = FcnDetector(P_Net, model_path[0])
    detectors[0] = PNet

    if test_mode in ["RNet", "ONet"]:
        RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
        detectors[1] = RNet

    if test_mode == "ONet":
        ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
        detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors,
                                   min_face_size=min_face_size,
                                   stride=stride,
                                   threshold=thresh)
    return mtcnn_detector
コード例 #2
0
def test_aux_net(name_list, dataset_path, prefix, epoch, batch_size, test_mode="rnet",
                 thresh=[0.6, 0.6, 0.7], min_face_size=24, vis=False):

    detectors = [None, None, None]
    model_path = ['%s-%s' % (x, y) for x, y in zip(prefix, epoch)]
    # load pnet model
    PNet = FcnDetector(P_Net, model_path[0])
    detectors[0] = PNet

    # load rnet model
    if test_mode in ["rnet", "onet"]:
        RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
        detectors[1] = RNet

    # load onet model
    if test_mode == "onet":
        ONet = Detector(O_AUX_Net, 48, batch_size[2], model_path[2], aux_idx=3)
        detectors[2] = ONet

    mtcnn_detector = JDAPDetector(detectors=detectors, min_face_size=min_face_size, threshold=thresh)

    fin = open(name_list, 'r')
    fout = open('/home/dafu/workspace/FaceDetect/tf_JDAP/evaluation/onet/onet_wider_landmark_pose_test.txt', 'w')
    lines = fin.readlines()
    test_image_id = 0
    for line in lines:
        test_image_id += 1
        related_name = line.strip().split()[0]
        if '.jpg' not in related_name:
            related_name += '.jpg'
        print(test_image_id, related_name)
        image_name = os.path.join(dataset_path, related_name)
        image = cv2.imread(image_name)
        src_boxes, cal_boxes, land_reg, pose_reg = mtcnn_detector.detect(image, aux_idx=3)
        box_num = cal_boxes.shape[0]
        write_str = line + str(box_num) + '\n'
        proposal_side = src_boxes[:, 2] - src_boxes[:, 0]
        pose_reg = pose_reg * 180/3.14
        for i in range(box_num):
            bbox = cal_boxes[i, :4]
            score = cal_boxes[i, 4]
            x1, y1, x2, y2 = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
            write_str += ' '.join(str(x) for x in [x1, y1, x2 - x1 + 1, y2 - y1 + 1]) + ' %.4f' % score + '\n'
            if vis:
                pose_info = "%.2f %.2f %.2f" % (pose_reg[i][0], pose_reg[i][1], pose_reg[i][2])
                cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 200), 2)
                cv2.putText(image, pose_info, (x1, y2), 1, 1, (200, 200, 0), 2)
                for land_id in range(5):
                    point_x = int(land_reg[i][land_id * 2] * proposal_side[i] + src_boxes[i][0])
                    point_y = int(land_reg[i][land_id * 2 + 1] * proposal_side[i] + src_boxes[i][1])
                    # point_x = int(land_reg[i][land_id * 2] * w + x1)
                    # point_y = int(land_reg[i][land_id * 2 + 1] * h + y1)
                    cv2.circle(image, (point_x, point_y), 2, (200, 0, 0), 2)
        fout.write(write_str)
        if vis:
            cv2.imshow("a", image)
            cv2.waitKey(0)
コード例 #3
0
def main(args):
  '''通过PNet或RNet生成下一个网络的输入'''
  size = args.input_size
  batch_size = config.batches
  min_face_size = config.min_face
  stride = config.stride
  thresh = config.thresh
  scale_factor = config.scale_factor
  #模型地址
  model_path = ['model/PNet/', 'model/RNet/', 'model/ONet']
  if size == 12:
    net = 'PNet'
    save_size = 24
  elif size == 24:
    net = 'RNet'
    save_size = 48
  #图片数据地址
  base_dir = 'data/WIDER_train/'
  #处理后的图片存放地址
  data_dir = 'data/%d' % (save_size)
  neg_dir = os.path.join(data_dir, 'negative')
  pos_dir = os.path.join(data_dir, 'positive')
  part_dir = os.path.join(data_dir, 'part')
  for dir_path in [neg_dir, pos_dir, part_dir]:
    if not os.path.exists(dir_path):
      os.makedirs(dir_path)
  detectors = [None, None, None]
  PNet = FcnDetector(P_Net, model_path[0])
  detectors[0] = PNet
  if net == 'RNet':
    RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
    detectors[1] = RNet
  filename = 'data/wider_face_train_celeba.txt'
  # 读取文件的image和box对应函数在utils中
  data = read_anno(base_dir, filename)
  mtcnn_detector = MtcnnDetector(detectors,
                                 min_face_size=min_face_size,
                                 stride=stride,
                                 threshold=thresh)
  # save_path = data_dir
  # save_file = os.path.join(save_path, 'detections.pkl')
  # if not os.path.exists(save_file):
  # 将data制作成迭代器
  print('载入数据')
  test_data = TestLoader(data['images'])
  detectors, _ = mtcnn_detector.detect_face(test_data)
  print('完成识别')

  # with open(save_file, 'wb') as f:
  #     pickle.dump(detectors, f, 1)

  print('开始生成图像')
  save_hard_example(save_size, data, neg_dir, pos_dir, part_dir, detectors)
コード例 #4
0
def t_net(anno_file, data_dir, image_size, epoch, batch_size, thresh, slide_window, test_mode="PNet", min_face_size=25, stride=2):

    prefix = [config.ROOT_DIR + '/trained_models/PNet',
              config.ROOT_DIR + '/trained_models/RNet',
              config.ROOT_DIR + '/trained_models/ONet']

    detectors = [None, None, None]
    print("Test model: ", test_mode)
    model_path = ['%s-%s' % (x, y) for x, y in zip(prefix, epoch)]

    print(model_path[0])
    if slide_window:
        PNet = Detector(P_Net, 12, batch_size[0], model_path[0])
    else:
        PNet = FcnDetector(P_Net, model_path[0])
    detectors[0] = PNet

    if test_mode in ["RNet", "ONet"]:
        print("==================================", test_mode)
        RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
        detectors[1] = RNet

    if test_mode == "ONet":
        print("==================================", test_mode)
        ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
        detectors[2] = ONet

    data = read_annotation(anno_file)
    mtcnn_detector = MtcnnDetector(detectors=detectors, min_face_size=min_face_size,
                                   stride=stride, threshold=thresh, slide_window=slide_window)
    print("==================================")

    print('load test data')
    test_data = TestLoader(data['images'][:10])
    print('finish loading')
    print('start detecting....')
    detections, _ = mtcnn_detector.detect_face(test_data)
    print('finish detecting ')
    save_net = 'RNet'
    if test_mode == "PNet":
        save_net = "RNet"
    elif test_mode == "RNet":
        save_net = "ONet"
    save_path = os.path.join(data_dir, save_net)
    print('save_path is :')
    print(save_path)
    if not os.path.exists(save_path):
        os.mkdir(save_path)

    save_file = os.path.join(save_path, "detections.pkl")
    with open(save_file, 'wb') as f:
        pickle.dump(detections, f, 1)
    save_hard_example(data, save_path, image_size)
コード例 #5
0
def test_single_net(prefix, epoch, stage, attribute='landmark_pose'):
    model_path = '%s-%s' % (prefix, epoch)
    # load pnet model
    if stage == 12:
        detector = FcnDetector(P_Net, model_path)
    elif stage == 24:
        detector = Detector(R_Net, 24, 1, model_path)
    elif stage == 48:
        if 'landmark_pose' in attribute:
            detector = Detector(O_AUX_Net, 48, 1, model_path, aux_idx=3)
        else:
            detector = Detector(O_Net, 48, 1, model_path)
    return detector
コード例 #6
0
def test_single_net(prefix, epoch, stage, attribute='landmark_pose'):
    model_path = '%s-%s' % (prefix, epoch)
    # load pnet model
    if stage == 12:
        detector = FcnDetector(P_Net, model_path)
    elif stage == 24:
        detector = Detector(R_Net, 24, 1, model_path)
    elif stage == 48:
        if 'landmark_pose' in attribute:
            detector = Detector(O_AUX_Net, 48, 1, model_path, aux_idx=3)
            #detector = Detector(JDAP_48Net_Landmark_Pose_Mean_Shape, 48, 1, model_path, aux_idx=3)
        elif 'landmark' in attribute:
            detector = Detector(JDAP_48Net_Landmark_Mean_Shape, 48, 1, model_path, aux_idx=1)
            #etector = Detector(JDAP_48Net_Landmark, 48, 1, model_path, aux_idx=1)
        elif 'pose' in attribute:
            detector = Detector(JDAP_48Net_Pose, 48, 1, model_path, aux_idx=2)
        else:
            detector = Detector(O_Net, 48, 1, model_path)
    return detector
コード例 #7
0
    def _init_model(self, prefix, epoch):
        test_mode, batch_size, is_ERC, thresh, min_face_size = self.fix_param
        # load pnet model
        detectors = [None, None, None]
        model_path = ['%s-%s' % (x, y) for x, y in zip(prefix, epoch)]
        PNet = FcnDetector(P_Net, model_path[0])
        detectors[0] = PNet
        self.aux_idx = 0
        # load rnet model
        if "onet" in test_mode or "rnet" in test_mode:
            if is_ERC:
                self.aux_idx = 4
                RNet = Detector(R_Net_ERC, 24, batch_size[1], model_path[1], self.aux_idx)
            else:
                #RNet = Detector(M_Net, 18, batch_size[1], model_path[1])
                RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
            detectors[1] = RNet

        # load onet model
        if "onet" in test_mode:
            if 'landmark_pose' in test_mode:
                self.aux_idx = 3
                #ONet = Detector(JDAP_48Net_Landmark_Pose_Dynamic_Shape, 48, batch_size[2], model_path[2], self.aux_idx)
                ONet = Detector(JDAP_48Net_Landmark_Pose_Mean_Shape, 48, batch_size[2], model_path[2], self.aux_idx)
                #ONet = Detector(O_AUX_Net, 48, batch_size[2], model_path[2], self.aux_idx)
                #ONet = Detector(A_Net, 36, batch_size[2], model_path[2], self.aux_idx)
            elif 'landmark' in test_mode:
                self.aux_idx = 1
                #ONet = Detector(JDAP_48Net_Landmark, 48, batch_size[2], model_path[2], self.aux_idx)
                ONet = Detector(JDAP_48Net_Landmark_Mean_Shape, 48, batch_size[2], model_path[2], self.aux_idx)
            elif 'pose' in test_mode:
                self.aux_idx = 2
                ONet = Detector(JDAP_48Net_Pose, 48, batch_size[2], model_path[2], self.aux_idx)
                #ONet = Detector(JDAP_48Net_Pose_Branch, 48, batch_size[2], model_path[2], self.aux_idx)
            else:
                #ONet = Detector(A_Cls_Net, 36, batch_size[2], model_path[2])
                ONet = Detector(O_Net, 48, batch_size[2], model_path[2])

            detectors[2] = ONet

        jdap_detector = JDAPDetector(detectors=detectors, is_ERC=False, min_face_size=min_face_size, threshold=thresh)
        return jdap_detector
コード例 #8
0
ファイル: one_image_test.py プロジェクト: hxq9304/face
def gen_mtcnn_model():
    test_mode = "ONet"
    thresh = [0.9, 0.6, 0.7]
    min_face_size = 24
    stride = 2
    slide_window = False
    shuffle = False
    detectors = [None, None, None]
    prefix = [
        'E:\\AIcode\\face\\model\\MTCNN_model\\PNet_landmark\\PNet',
        'E:\\AIcode\\face\\model\\MTCNN_model\\RNet_landmark\\RNet',
        'E:\\AIcode\\face\\model\\MTCNN_model\\ONet_landmark\\ONet'
    ]
    epoch = [18, 14, 16]
    batch_size = [2048, 256, 16]
    model_path = ['%s-%s' % (x, y) for x, y in zip(prefix, epoch)]
    # load pnet model
    if slide_window:
        PNet = Detector(P_Net, 12, batch_size[0], model_path[0])
    else:
        PNet = FcnDetector(P_Net, model_path[0])
    detectors[0] = PNet

    # load rnet model
    if test_mode in ["RNet", "ONet"]:
        RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
        detectors[1] = RNet

    # load onet model
    if test_mode == "ONet":
        ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
        detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors,
                                   min_face_size=min_face_size,
                                   stride=stride,
                                   threshold=thresh,
                                   slide_window=slide_window)
    return mtcnn_detector
コード例 #9
0
thresh = [0.9, 0.6, 0.7]
min_face_size = 24
stride = 2
slide_window = False
shuffle = False
detectors = [None, None, None]
prefix = [FLAGS.ckpt + '/PNet_landmark/PNet', FLAGS.ckpt + '/RNet_landmark/RNet', FLAGS.ckpt + '/ONet_landmark/ONet']

epoch = [18, 14, 16]
batch_size = [2048, 256, 16]
model_path = ['%s-%s' % (x, y) for x, y in zip(prefix, epoch)]
# load pnet model
if slide_window:
    PNet = Detector(P_Net, 12, batch_size[0], model_path[0], FLAGS.num_inter_threads, FLAGS.num_intra_threads)
else:
    PNet = FcnDetector(P_Net, model_path[0], FLAGS.num_inter_threads, FLAGS.num_intra_threads)
detectors[0] = PNet

# load rnet model
if test_mode in ["RNet", "ONet"]:
    RNet = Detector(R_Net, 24, batch_size[1], model_path[1], FLAGS.num_inter_threads, FLAGS.num_intra_threads)
    detectors[1] = RNet

# load onet model
if test_mode == "ONet":
    ONet = Detector(O_Net, 48, batch_size[2], model_path[2], FLAGS.num_inter_threads, FLAGS.num_intra_threads)
    detectors[2] = ONet

mtcnn_detector = MtcnnDetector(detectors=detectors, min_face_size=min_face_size,
                               stride=stride, threshold=thresh, slide_window=slide_window)
gt_imdb = []
コード例 #10
0
def load_and_align_data(image_size=160, coordinate=None):
    print('Creating networks and loading parameters')

    # 加载P_Net
    PNet = FcnDetector(P_Net, model_path[0])
    detectors[0] = PNet

    # 加载R_Net
    RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
    detectors[1] = RNet

    # 加载O_Net
    ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
    detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors, min_face_size=min_face_size, threshold=thresh)

    img_list = []

    test_data = TestLoader(image_files)

    all_boxes, landmarks = mtcnn_detector.detect_face(test_data)

    action_num = int(len(coordinate) / 4)
    face_state = []
    action_state = []
    for i in range(len(all_boxes[len(all_boxes) - 1])):
        face_state.append(False)
    for j in range(action_num):
        action_state.append(False)
    for i in range(len(all_boxes[len(all_boxes) - 1])):
        for j in range(action_num):
            if action_num == 1:
                if action_state:
                    continue
                if all_boxes[len(all_boxes) - 1][i][0] > coordinate[4 * j] and all_boxes[len(all_boxes) - 1][i][1] > coordinate[4 * j + 1]\
                        and all_boxes[len(all_boxes) - 1][i][2] < coordinate[4 * j + 2] and all_boxes[len(all_boxes) - 1][i][3] < coordinate[4 * j + 3]:
                    face_state[i] = True
                    action_state = True
            else:
                if action_state[j]:
                    continue
                if all_boxes[len(all_boxes) - 1][i][0] > coordinate[4 * j] and all_boxes[len(all_boxes) - 1][i][1] > coordinate[4 * j + 1]\
                        and all_boxes[len(all_boxes) - 1][i][2] < coordinate[4 * j + 2] and all_boxes[len(all_boxes) - 1][i][3] < coordinate[4 * j + 3]:
                    face_state[i] = True
                    action_state[j] = True

    count = 0
    for image in image_files:
        img = misc.imread(os.path.expanduser(image), mode='RGB')
        for bbox in all_boxes[count]:
            # 提取脸框
            cropped = img[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
            # 人脸摆正
            aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
            # 人脸白化
            prewhitened = facenet.prewhiten(aligned)

            img_list.append(prewhitened)
        count += 1
    images = np.stack(img_list)
    return images, face_state
コード例 #11
0
def main():
    thresh = config.thresh
    min_face_size = config.min_face
    stride = config.stride
    test_mode = config.test_mode
    detectors = [None, None, None]
    # 模型放置位置
    model_path = ['model/PNet/', 'model/RNet/', 'model/ONet']
    batch_size = config.batches
    PNet = FcnDetector(P_Net, model_path[0])
    detectors[0] = PNet

    if test_mode in ["RNet", "ONet"]:
        RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
        detectors[1] = RNet

    if test_mode == "ONet":
        ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
        detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors,
                                   min_face_size=min_face_size,
                                   stride=stride,
                                   threshold=thresh)
    out_path = config.out_path
    if not os.path.exists(out_path):
        os.makedirs(out_path)
    #选用图片
    path = config.test_dir
    #获取图片类别和路径
    dataset = get_dataset(path)
    random.shuffle(dataset)

    # In[4]:

    bounding_boxes_filename = os.path.join(out_path, 'bounding_boxes.txt')

    with open(bounding_boxes_filename, "w") as text_file:
        for cls in tqdm(dataset):
            output_class_dir = os.path.join(out_path, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                #得到图片名字如001
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir,
                                               filename + '.jpg')
                if not os.path.exists(output_filename):
                    try:
                        img = cv2.imread(image_path)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim < 3:
                            print('图片不对劲 "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            continue

                        img = img[:, :, 0:3]
                        #通过mtcnn获取人脸框
                        try:
                            boxes_c, _ = mtcnn_detector.detect(img)
                        except:
                            print('识别不出图像:{}'.format(image_path))
                            continue
                        #人脸框数量
                        num_box = boxes_c.shape[0]
                        if num_box > 0:
                            det = boxes_c[:, :4]
                            det_arr = []
                            img_size = np.asarray(img.shape)[:2]
                            if num_box > 1:
                                if config.detect_multiple_faces:
                                    for i in range(num_box):
                                        det_arr.append(np.squeeze(det[i]))
                                else:
                                    #如果保留一张脸,但存在多张,只保留置信度最大的
                                    score = boxes_c[:, 4]
                                    index = np.argmax(score)
                                    det_arr.append(det[index, :])
                            else:
                                det_arr.append(np.squeeze(det))
                            for i, det in enumerate(det_arr):
                                det = np.squeeze(det)
                                bb = [
                                    int(max(det[0], 0)),
                                    int(max(det[1], 0)),
                                    int(min(det[2], img_size[1])),
                                    int(min(det[3], img_size[0]))
                                ]
                                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                                try:
                                    scaled = cv2.resize(
                                        cropped,
                                        (config.image_size, config.image_size),
                                        interpolation=cv2.INTER_LINEAR)
                                except:
                                    print(
                                        '识别不出的图像:{},box的大小{},{},{},{}'.format(
                                            image_path, bb[0], bb[1], bb[2],
                                            bb[3]))
                                    continue
                                filename_base, file_extension = os.path.splitext(
                                    output_filename)
                                if config.detect_multiple_faces:
                                    output_filename_n = "{}_{}{}".format(
                                        filename_base, i, file_extension)
                                else:
                                    output_filename_n = "{}{}".format(
                                        filename_base, file_extension)
                                    cv2.imwrite(output_filename_n, scaled)
                                    text_file.write('%s %d %d %d %d\n' %
                                                    (output_filename_n, bb[0],
                                                     bb[1], bb[2], bb[3]))
                        else:
                            print('图像不能对齐 "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
コード例 #12
0
ファイル: one_image_test.py プロジェクト: Djack1028/face
slide_window = False
shuffle = False
detectors = [None, None, None]
prefix = [
    'model/MTCNN_model/PNet_landmark/PNet',
    'model/MTCNN_model/RNet_landmark/RNet',
    'model/MTCNN_model/ONet_landmark/ONet'
]
epoch = [18, 14, 16]
batch_size = [2048, 256, 16]
model_path = ['%s-%s' % (x, y) for x, y in zip(prefix, epoch)]
# load pnet model
if slide_window:
    PNet = Detector(P_Net, 12, batch_size[0], model_path[0])
else:
    PNet = FcnDetector(P_Net, model_path[0])
detectors[0] = PNet

# load rnet model
if test_mode in ["RNet", "ONet"]:
    RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
    detectors[1] = RNet

# load onet model
if test_mode == "ONet":
    ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
    detectors[2] = ONet

mtcnn_detector = MtcnnDetector(detectors=detectors,
                               min_face_size=min_face_size,
                               stride=stride,
コード例 #13
0
def align_face(path='../pictures/'):
    thresh=config.thresh
    min_face_size=config.min_face
    stride=config.stride
    test_mode=config.test_mode
    detectors=[None,None,None]
    # 模型放置位置
    model_path=['../align/model/PNet/','../align/model/RNet/','../align/model/ONet']
    batch_size=config.batches
    PNet=FcnDetector(P_Net,model_path[0])
    detectors[0]=PNet


    if test_mode in ["RNet", "ONet"]:
        RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
        detectors[1] = RNet


    if test_mode == "ONet":
        ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
        detectors[2] = ONet

    mtcnn_detector = MtcnnDetector(detectors=detectors, min_face_size=min_face_size,
                                   stride=stride, threshold=thresh)
   
    #选用图片
    #获取图片类别和路径
    img_paths=os.listdir(path)
    class_names=[a.split('.')[0] for a in img_paths]
    img_paths=[os.path.join(path,p) for p in img_paths]
    scaled_arr=[]
    class_names_arr=[]
    
    for image_path,class_name in zip(img_paths,class_names):
        
        img = cv2.imread(image_path)
#         cv2.imshow('',img)
#         cv2.waitKey(0)
        try:
            boxes_c,_=mtcnn_detector.detect(img)
        except:
            print('识别不出图像:{}'.format(image_path))
            continue
        #人脸框数量
        num_box=boxes_c.shape[0]
        if num_box>0:
            det=boxes_c[:,:4]
            det_arr=[]
            img_size=np.asarray(img.shape)[:2]
            if num_box>1:
               
                #如果保留一张脸,但存在多张,只保留置信度最大的
                score=boxes_c[:,4]
                index=np.argmax(score)
                det_arr.append(det[index,:])
            else:
                det_arr.append(np.squeeze(det))
            for i,det in enumerate(det_arr):
                det=np.squeeze(det)
                bb=[int(max(det[0],0)), int(max(det[1],0)), int(min(det[2],img_size[1])), int(min(det[3],img_size[0]))]
                cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
                
                scaled =cv2.resize(cropped,(160, 160),interpolation=cv2.INTER_LINEAR)-127.5/128.0
                scaled_arr.append(scaled)
                class_names_arr.append(class_name)
    
        else:
            print('图像不能对齐 "%s"' % image_path)
    scaled_arr=np.asarray(scaled_arr)
    class_names_arr=np.asarray(class_names_arr)
    return scaled_arr,class_names_arr
コード例 #14
0
    net = 'SNet'
    save_size = 96

# 图片数据地址
base_dir = 'data/WIDER_train/'
#处理后的图片存放地址
neg_dir = join('data', str(save_size), 'negative')
pos_dir = join('data', str(save_size), 'positive')
part_dir = join('data', str(save_size), 'part')

for dir_path in [neg_dir, pos_dir, part_dir]:
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)

detectors = [None, None, None]
PNet = FcnDetector(P_Net, model_path[0], using_cpu=True)
detectors[0] = PNet
if net == 'RNet':
    RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
    detectors[1] = RNet

filename = 'data/wider_face_train_celeba.txt'

# 读取文件的image和box对应函数在utils中
data = read_anno(base_dir, filename)
# using MTCNN Detector to generate all boxes of all images
mtcnn_detector = MtcnnDetector(detectors=detectors,
                               min_face_size=min_face_size,
                               stride=stride,
                               threshold=thresh,
                               scale_factor=scale_factor)
コード例 #15
0
# In[ ]:
# test_mode = config.test_mode
test_mode = 'ONet'
thresh = [0.6, 0.7, 0.9]
min_face_size = 24
stride = 2
detectors = [None, None, None]

scale_factor = 0.79

# 模型放置位置
model_path = ['model/PNet/', 'model/RNet/', 'model/ONet']
batch_size = config.batches

detectors[0] = FcnDetector(P_Net, model_path[0])  # detecotors for PNet
if test_mode in ['RNet', 'ONet']:
    detectors[1] = Detector(R_Net, 24, batch_size[1], model_path[1])

    if test_mode == 'ONet':
        detectors[2] = Detector(O_Net, 48, batch_size[2], model_path[2])

# Use the three detectors to construct a
mtcnn_detector = MtcnnDetector(detectors=detectors,
                               min_face_size=min_face_size,
                               stride=stride,
                               threshold=thresh,
                               scale_factor=scale_factor)

out_path = join('validate', test_mode) + '/'