コード例 #1
0
def RasterizeLandCoverTile(tile, overwrite=False, **kwargs):
    """
    Calculate one tile of landcover data from BD Topo and RPG
    """

    template_raster = config.datasource('dem').filename

    landcover_base_tilename = config.tileset().tilename('landcover-cesbio',
                                                        row=tile.row,
                                                        col=tile.col)

    output = config.tileset().tilename('landcover-bdt',
                                       row=tile.row,
                                       col=tile.col)

    if os.path.exists(output) and not overwrite:
        return

    with rio.open(landcover_base_tilename) as ds:
        data = ds.read(1)
        profile = ds.profile.copy()

    with rio.open(template_raster) as template:

        window_t = as_window(tile.bounds, template.transform)
        it = window_t.row_off
        jt = window_t.col_off
        height = window_t.height
        width = window_t.width

        # data, profile = MkBaseLandCoverTile(tile, window_t)
        # CESBIO Water -> Open Natural
        data[data == 0] = 2

        transform = template.transform * \
            template.transform.translation(jt, it)

        # RasterizeBDTopoLayer(data, tile, transform, sea_mask)
        RasterizeBDTopoLayer(data, tile, transform, diffuse_urban)
        RasterizeBDTopoLayer(data, tile, transform, open_natural)
        RasterizeBDTopoLayer(data, tile, transform, grassland)
        RasterizeBDTopoLayer(data, tile, transform, cropland)
        RasterizeBDTopoLayer(data, tile, transform, forest)
        RasterizeBDTopoLayer(data, tile, transform, dense_urban)

        data = features.sieve(data, 50, connectivity=4)

        RasterizeBDTopoLayer(data, tile, transform, infrastructures)
        RasterizeBDTopoLayer(data, tile, transform, gravels)
        RasterizeBDTopoLayer(data, tile, transform, water)

        profile.update(height=height,
                       width=width,
                       nodata=255,
                       dtype='uint8',
                       transform=transform,
                       compress='deflate')

        with rio.open(output, 'w', **profile) as dst:
            dst.write(data, 1)
コード例 #2
0
ファイル: rasterize_cesbio.py プロジェクト: sdunesme/fct-cli
def RasterizeLandCoverTile(tile):
    """
    Enrich medium-resolution landcover data (CESBIO)
    with high-resolution data from topographic database (BD Topo)
    for class 'Water Channel' (0) and 'Gravel Bars' (1)
    """

    rasterfile = config.tileset().tilename(
        'landcover-cesbio',
        row=tile.row,
        col=tile.col)

    with rio.open(rasterfile) as ds:

        data = ds.read(1)
        profile = ds.profile.copy()
        profile.update(compress='deflate')
        transform = ds.transform

    # reclass unprecise CESBIO water to natural/open vegetation
    # precise water and gravel bars are going
    # to be extracted from BD Topo
    data[data == 0] = 2

    layers = [
        # extract_sea,
        gravels,
        water
    ]

    def shapes(fun):
        """
        Generate Landcover Polygons
        """

        with fiona.open(fun(tile.bounds)) as fs:

            if len(fs) == 0:
                raise StopIteration

            for feature in fs:
                yield feature['geometry'], feature['properties']['landcover']

    for layer in layers:

        try:
            features.rasterize(shapes(layer), out=data, transform=transform)
        except RuntimeError:
            pass

    with rio.open(rasterfile, 'w', **profile) as dst:
        dst.write(data, 1)
コード例 #3
0
def RasterizeLandCover(processes=1, **kwargs):

    tileindex = config.tileset().tileindex

    arguments = [(RasterizeLandCoverTile, tile, kwargs)
                 for tile in tileindex.values()]

    with Pool(processes=processes, initializer=setup) as pool:

        pooled = pool.imap_unordered(starcall, arguments)

        with click.progressbar(pooled, length=len(arguments)) as iterator:
            for _ in iterator:
                pass
コード例 #4
0
def CropOutSeaMask(processes=1, **kwargs):

    tileset = config.tileset()

    def arguments():

        for tile in tileset.tiles():
            yield (CropOutSeaMaskTile, tile, kwargs)

    with Pool(processes=processes, initializer=setup) as pool:

        pooled = pool.imap_unordered(starcall, arguments())

        with click.progressbar(pooled, length=len(tileset)) as iterator:
            for _ in iterator:
                pass
コード例 #5
0
ファイル: rasterize_cesbio.py プロジェクト: sdunesme/fct-cli
def cli(processes):
    """
    Calculate landcover raster layer
    """

    # config.default()
    config.auto()
    tileset = config.tileset()

    click.secho('Command        : %s' % 'rasterize landcover', fg='green')
    click.secho('FCT version    : %s' % version)
    click.secho('Tileset        : %s' % tileset.name)
    click.secho('# of tiles     : %d' % len(tileset))
    if processes > 1:
        click.secho('Run %d parallel processes' % processes, fg='yellow')

    RasterizeLandCover(processes)
コード例 #6
0
def SeaMask():

    coastal_tiles = [(8, 5), (8, 6), (8, 7), (7, 6), (7, 7), (7, 8)]

    driver = 'ESRI Shapefile'
    crs = fiona.crs.from_epsg(2154)
    schema = {'geometry': 'Polygon', 'properties': [('landcover', 'int:2')]}
    options = dict(driver=driver, crs=crs, schema=schema)

    output = os.path.join('/media/crousson/Backup/TESTS/TuilesVar',
                          'SEA_MASK.shp')

    with fiona.open(output, 'w', **options) as fst:

        for row, col in coastal_tiles:

            filename = config.tileset('landcover').tilename('landcover',
                                                            row=row,
                                                            col=col)
            with rio.open(filename) as ds:

                data = ds.read(1)
                mask = (data == 0)

                polygons = features.shapes(data,
                                           mask,
                                           connectivity=8,
                                           transform=ds.transform)

                for polygon, landcover in polygons:

                    geom = asShape(polygon).buffer(0.0)
                    feature = {
                        'geometry': geom.__geo_interface__,
                        'properties': {
                            'landcover': int(landcover)
                        }
                    }

                    fst.write(feature)
コード例 #7
0
def RasterizeLandCoverTile(tile):

    rasterfile = config.tileset('landcover').tilename('landcover',
                                                      row=tile.row,
                                                      col=tile.col)

    with rio.open(rasterfile) as ds:

        data = ds.read(1)
        profile = ds.profile.copy()
        profile.update(compress='deflate')
        transform = ds.transform

    data[data == 0] = 2

    layers = [extract_sea, gravels, water]

    def shapes(fun):
        """
        Generate Landcover Polygons
        """

        with fiona.open(fun(tile.bounds)) as fs:

            if len(fs) == 0:
                raise StopIteration

            for feature in fs:
                yield feature['geometry'], feature['properties']['landcover']

    for layer in layers:

        try:
            features.rasterize(shapes(layer), out=data, transform=transform)
        except RuntimeError:
            pass

    with rio.open(rasterfile, 'w', **profile) as dst:
        dst.write(data, 1)
コード例 #8
0
def CropOutSeaMaskTile(tile, **kwargs):

    seamask_file = os.path.join(config.workdir, 'AUX', 'MASQUE_MER.shp')

    output = config.tileset().tilename('landcover-bdt',
                                       row=tile.row,
                                       col=tile.col)

    def shapes():
        """
        Generate Landcover Polygons
        """

        with fiona.open(seamask_file) as fs:

            if len(fs) == 0:
                return

            for feature in fs:
                yield feature['geometry'], 1

    with rio.open(output) as ds:
        data = ds.read(1)
        profile = ds.profile.copy()
        transform = ds.transform

    try:
        mask = np.zeros_like(data, dtype='uint8')
        features.rasterize(shapes(), out=mask, transform=transform)
    except RuntimeError:
        pass

    data[mask == 1] = ds.nodata

    profile.update(compress='deflate')

    with rio.open(output, 'w', **profile) as dst:
        dst.write(data, 1)