コード例 #1
0
def pcaTB(f, time, a=0.5, p=.99, no=5, parallel=True):
    """
    This function computes tolerance bounds for functional data containing
    phase and amplitude variation using fPCA

    :param f: numpy ndarray of shape (M,N) of N functions with M samples
    :param time: vector of size M describing the sample points
    :param a: confidence level of tolerance bound (default = 0.05)
    :param p: coverage level of tolerance bound (default = 0.99)
    :param no: number of principal components (default = 5)
    :param parallel: enable parallel processing (default = T)
    :type f: np.ndarray
    :type time: np.ndarray

    :rtype: tuple of boxplot objects
    :return warp: alignment data from time_warping
    :return pca: functional pca from jointFPCA
    :return tol: tolerance factor

    """

    # Align Data
    out_warp = fs.fdawarp(f, time)
    out_warp.srsf_align( method="median", parallel=parallel)

    # Calculate pca
    out_pca = fpca.fdajpca(out_warp)
    out_pca.calc_fpca(no)

    # Calculate TB
    tol = mvtol_region(out_pca.coef, a, p, 100000)

    return warp, pca, tol
コード例 #2
0
    def joint_gauss_model(self, n=1, no=3):
        """
        This function models the functional data using a joint Gaussian model
        extracted from the principal components of the srsfs

        :param n: number of random samples
        :param no: number of principal components (default = 3)
        :type n: integer
        :type no: integer
        """

        # Parameters
        fn = self.fn
        time = self.time
        qn = self.qn
        gam = self.gam

        M = time.size

        # Perform PCA
        jfpca = fpca.fdajpca(self)
        jfpca.calc_fpca(no=no)
        s = jfpca.latent
        U = jfpca.U
        C = jfpca.C
        mu_psi = jfpca.mu_psi

        # compute mean and covariance
        mq_new = qn.mean(axis=1)
        mididx = jfpca.id
        m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
        mqn = np.append(mq_new, m_new.mean())

        # generate random samples
        vals = np.random.multivariate_normal(np.zeros(s.shape), np.diag(s), n)

        tmp = np.matmul(U, np.transpose(vals))
        qhat = np.tile(mqn.T, (n, 1)).T + tmp[0:M + 1, :]
        tmp = np.matmul(U, np.transpose(vals) / C)
        vechat = tmp[(M + 1):, :]
        psihat = np.zeros((M, n))
        gamhat = np.zeros((M, n))
        for ii in range(n):
            psihat[:, ii] = geo.exp_map(mu_psi, vechat[:, ii])
            gam_tmp = cumtrapz(psihat[:, ii]**2,
                               np.linspace(0, 1, M),
                               initial=0.0)
            gamhat[:, ii] = (gam_tmp - gam_tmp.min()) / (gam_tmp.max() -
                                                         gam_tmp.min())

        ft = np.zeros((M, n))
        fhat = np.zeros((M, n))
        for ii in range(n):
            fhat[:, ii] = uf.cumtrapzmid(
                time, qhat[0:M, ii] * np.fabs(qhat[0:M, ii]),
                np.sign(qhat[M, ii]) * (qhat[M, ii] * qhat[M, ii]), mididx)
            ft[:, ii] = uf.warp_f_gamma(np.linspace(0, 1, M), fhat[:, ii],
                                        gamhat[:, ii])

        self.rsamps = True
        self.fs = fhat
        self.gams = gamhat
        self.ft = ft
        self.qs = qhat[0:M, :]

        return
コード例 #3
0
    def calc_model(self,
                   pca_method="combined",
                   no=5,
                   smooth_data=False,
                   sparam=25,
                   parallel=False,
                   C=None):
        """
        This function identifies a regression model with phase-variability
        using elastic pca

        :param pca_method: string specifing pca method (options = "combined",
                        "vert", or "horiz", default = "combined")
        :param no: scalar specify number of principal components (default=5)
        :param smooth_data: smooth data using box filter (default = F)
        :param sparam: number of times to apply box filter (default = 25)
        :param parallel: run in parallel (default = F)
        :param C: scale balance parameter for combined method (default = None)
        """

        if smooth_data:
            self.f = fs.smooth_data(self.f, sparam)

        N1 = self.f.shape[1]

        # Align Data
        self.warp_data = fs.fdawarp(self.f, self.time)
        self.warp_data.srsf_align(parallel=parallel)

        # Calculate PCA
        if pca_method == 'combined':
            out_pca = fpca.fdajpca(self.warp_data)
        elif pca_method == 'vert':
            out_pca = fpca.fdavpca(self.warp_data)
        elif pca_method == 'horiz':
            out_pca = fpca.fdahpca(self.warp_data)
        else:
            raise Exception('Invalid fPCA Method')
        out_pca.calc_fpca(no)

        # OLS using PCA basis
        lam = 0
        R = 0
        Phi = np.ones((N1, no + 1))
        Phi[:, 1:(no + 1)] = out_pca.coef
        xx = dot(Phi.T, Phi)
        inv_xx = inv(xx + lam * R)
        xy = dot(Phi.T, self.y)
        b = dot(inv_xx, xy)
        alpha = b[0]
        b = b[1:no + 1]

        # compute the SSE
        int_X = np.zeros(N1)
        for ii in range(0, N1):
            int_X[ii] = np.sum(out_pca.coef * b)

        SSE = np.sum((self.y - alpha - int_X)**2)

        self.alpha = alpha
        self.b = b
        self.pca = out_pca
        self.SSE = SSE
        self.pca_method = pca_method

        return
コード例 #4
0
    def calc_model(self,
                   pca_method="combined",
                   no=5,
                   smooth_data=False,
                   sparam=25,
                   parallel=False):
        """
        This function identifies a logistic regression model with phase-variability
        using elastic pca

        :param f: numpy ndarray of shape (M,N) of N functions with M samples
        :param y: numpy array of N responses
        :param time: vector of size M describing the sample points
        :param pca_method: string specifing pca method (options = "combined",
                        "vert", or "horiz", default = "combined")
        :param no: scalar specify number of principal components (default=5)
        :param smooth_data: smooth data using box filter (default = F)
        :param sparam: number of times to apply box filter (default = 25)
        :param parallel: run model in parallel (default = F)
        :type f: np.ndarray
        :type time: np.ndarray
        """

        if smooth_data:
            self.f = fs.smooth_data(self.f, sparam)

        N1 = self.f.shape[1]

        # Align Data
        self.warp_data = fs.fdawarp(self.f, self.time)
        self.warp_data.srsf_align(parallel=parallel)

        # Calculate PCA
        if pca_method == 'combined':
            out_pca = fpca.fdajpca(self.warp_data)
        elif pca_method == 'vert':
            out_pca = fpca.fdavpca(self.warp_data)
        elif pca_method == 'horiz':
            out_pca = fpca.fdahpca(self.warp_data)
        else:
            raise Exception('Invalid fPCA Method')
        out_pca.calc_fpca(no)

        # OLS using PCA basis
        lam = 0
        R = 0
        Phi = np.ones((N1, no + 1))
        Phi[:, 1:(no + 1)] = out_pca.coef
        # Find alpha and beta using l_bfgs
        b0 = np.zeros(self.n_classes * (no + 1))
        out = fmin_l_bfgs_b(rg.mlogit_loss,
                            b0,
                            fprime=rg.mlogit_gradient,
                            args=(Phi, self.Y),
                            pgtol=1e-10,
                            maxiter=200,
                            maxfun=250,
                            factr=1e-30)

        b = out[0]
        B0 = b.reshape(no + 1, self.n_classes)
        alpha = B0[0, :]

        # compute the Loss
        LL = rg.mlogit_loss(b, Phi, self.y)

        b = B0[1:no + 1, :]

        self.alpha = alpha
        self.b = b
        self.pca = out_pca
        self.LL = LL
        self.pca_method = pca_method

        return