コード例 #1
0
ファイル: predict.py プロジェクト: jinmyeonglee/DEN
    def __init__(self, den_path, fdc_path):
        self.den_model_pth = den_path
        self.den = DEN()
        self.den.load_state_dict(torch.load(self.den_model_pth), strict=False)

        self.fdc = FDC(self.den)
        self.fdc.load_weights(fdc_path)

        self.crop_ratios = [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]
        self.transform = Compose([
            transforms_nyu.Normalize(),
            transforms_nyu.FDCPreprocess(self.crop_ratios)
        ])
コード例 #2
0
ファイル: predict.py プロジェクト: jinmyeonglee/DEN
class FDCPredictor:
    def __init__(self, den_path, fdc_path):
        self.den_model_pth = den_path
        self.den = DEN()
        self.den.load_state_dict(torch.load(self.den_model_pth), strict=False)

        self.fdc = FDC(self.den)
        self.fdc.load_weights(fdc_path)

        self.crop_ratios = [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]
        self.transform = Compose([
            transforms_nyu.Normalize(),
            transforms_nyu.FDCPreprocess(self.crop_ratios)
        ])

    def prediction(self, img_path):
        print(img_path.split("."))
        with open(img_path, 'rb') as f_img:
            image = pickle.load(f_img)
        img = Image.fromarray(image, 'RGB')
        img.save(img_path + "ng")
        print(img_path + "ng" + " saved!")

        nyu_dict = {'image': image, 'depth': image}
        cropped = self.transform(nyu_dict)['stacked_images']
        cropped = cropped.unsqueeze(0)
        bsize, crops, c, h, w = cropped.size()
        print(bsize, crops, c, h, w)
        return self.fdc(cropped)[0]

    def save(self, img, des_path):
        img = Image.fromarray(img.numpy())
        img.save("/root/DEN/images/depth_img/" + des_path.split(".")[-2] +
                 ".tiff")
        print("/root/DEN/images/depth_img/" + des_path.split(".")[-2] +
              ".tiff" + "saved!")
コード例 #3
0
def compute_linkage_matrix(model):
    from fdc import FDC
    """Wrapper for constructing the final linkage matrix using build_dendrogram function

    Parameters
    ---------------

    model : FDC class object 
        Contains the coarse graining information determined by fitting and coarse graining
        with the data

    Return
    -------
    Z : linkage matrix - (n_coarse_grain, 4)
        From scipy's definition : "An (n−1)(n−1) by 4 matrix Z is 
        returned. At the ii-th iteration, clusters with indices Z[i, 0]
        and Z[i, 1] are combined to form cluster n+in+i. 
        A cluster with an index less than nn corresponds to one of
        the nn original observations. The distance between clusters
        Z[i, 0] and Z[i, 1] is given by Z[i, 2]. The fourth value 
        Z[i, 3] represents the number of original observations in 
        the newly formed cluster."

    """
    from copy import deepcopy
    
    assert type(model) == type(FDC()), 'wrong type !'
    
    hierarchy = deepcopy(model.hierarchy)
    noise_range = deepcopy(model.noise_range)
    
    # ---- PADDING trick --- for plotting purposes  ... 
    n_elem = len(hierarchy[-1]['cluster_labels'])
    terminal_cluster = hierarchy[-1]['idx_centers'][0]
    hierarchy.append({'idx_centers': [terminal_cluster], 'cluster_labels' : np.zeros(n_elem,dtype=int)})
    noise_range.append(1.5*model.max_noise)

    # -------------------------------------------
    # -------------------------------------------

    Z = build_dendrogram(hierarchy, noise_range)

    return Z
コード例 #4
0
'''
Created on Feb 1, 2017

@author: Alexandre Day

    Purpose:
        Perform density clustering on gaussian mixture
'''

from fdc import FDC
from sklearn.datasets import make_blobs
from fdc import plotting
import pickle
import numpy as np

n_true_center = 15

np.random.seed(0)

print("------> Example with %i true cluster centers <-------"%n_true_center)

X, y = make_blobs(10000, 2, n_true_center) # Generating random gaussian mixture

model = FDC(noise_threshold=0.05, nh_size=40) # specifying density clustering parameters

model.fit(X) # performing the clustering

plotting.set_nice_font() # nicer plotting font !

plotting.summary_model(model, ytrue=y, show=True, savefile="result.png")
コード例 #5
0
from fdc import plotting
import pickle
import numpy as np
from matplotlib import pyplot as plt

n_true_center = 15

np.random.seed(0)

print("------> Example with %i true cluster centers <-------"%n_true_center)

X, y = make_blobs(10000, 2, n_true_center) # Generating random gaussian mixture
X = StandardScaler().fit_transform(X) # always normalize your data :) 

# set eta=0.0 if you have excellent density profile fit (lots of data say)
model = FDC(eta = 0.01)#, atol=0.0001, rtol=0.0001)

model.fit(X) # performing the clustering

x = np.linspace(-0.5, 0.6,200)
y = 1.5*x+0.15
X_2 = np.vstack([x,y]).T
xy2 = X_2[65]
b=xy2[0]/1.5+xy2[1]
y2 = -x/1.5+b
#rho = np.exp(model.density_model.evaluate_density(X_2))
#plt.plot(rho)
#plt.show()
#exit()

plt.scatter(x, y, c="green", zorder=2)
コード例 #6
0
"""
Setting FDC parameters (note these are the same across all datasets)
"""

noise_threshold = 1.0

datasets = [noisy_circles, noisy_moons, varied, aniso, blobs, no_structure]
for i_dataset, dataset in enumerate(datasets):
    X, y = dataset
    # normalize dataset for easier parameter selection
    X = StandardScaler().fit_transform(X)

    # create clustering estimators

    model = FDC(noise_threshold=noise_threshold)

    s=time.time()

    model.fit(X)

    dt=time.time()-s

    n_center=len(model.idx_centers)

    plt.subplot(3,2,plot_num)
    plt.scatter(X[:, 0], X[:, 1], color=colors[model.cluster_label].tolist(), s=10,zorder=1)

    plt.text(.99, .07, ('%.2fs' % (dt)).lstrip('0'),
                 transform=plt.gca().transAxes, size=15,
                 horizontalalignment='right',zorder=2,
コード例 #7
0
#################################
#################################
#################################
"""
Setting FDC parameters (note these are the same across all datasets)
"""

datasets = [noisy_circles, noisy_moons, varied, aniso, blobs, no_structure]
for i_dataset, dataset in enumerate(datasets):
    X, y = dataset
    # normalize dataset for easier parameter selection
    X = StandardScaler().fit_transform(X)

    # create clustering estimators
    # atol and rtol set the precision of the density map, higher value improves performanc but reduces accuracy
    model = FDC(eta=0.4)

    s = time.time()

    model.fit(X)

    dt = time.time() - s

    n_center = len(model.idx_centers)

    plt.subplot(3, 2, plot_num)
    plt.scatter(X[:, 0],
                X[:, 1],
                color=colors[model.cluster_label].tolist(),
                s=10,
                zorder=1)