コード例 #1
0
def system(config, alphaL=5.6, kmax_squared=38, rcut=False):
    if rcut:
        config.set_model_param("cutoff", 0, rcut)
        config.set_model_param("cutoff", 1, rcut)
    system = feasst.System()
    system.add(config)
    system.add(
        feasst.Potential(
            feasst.MakeEwald(
                feasst.args({
                    "kmax_squared":
                    str(kmax_squared),
                    "alpha":
                    str(alphaL /
                        system.configuration().domain().min_side_length())
                }))))
    # Unfortunatley, swig isn't accepting the below method of constructing a two body factory
    #    system.add(feasst.Potential(feasst.MakeModelTwoBodyFactory(
    #        feasst.ModelTwoBodyVector([feasst.MakeLennardJones(), feasst.MakeChargeScreened()]))))
    two = feasst.MakeModelTwoBodyFactory()
    two.add(feasst.MakeLennardJones())
    two.add(feasst.MakeChargeScreened())
    system.add(feasst.Potential(two))
    system.add(
        feasst.Potential(feasst.MakeChargeScreenedIntra(),
                         feasst.MakeVisitModelBond()))
    system.add(feasst.Potential(feasst.MakeChargeSelf()))
    system.add(feasst.Potential(feasst.MakeLongRangeCorrections()))
    # system.precompute()
    return system
コード例 #2
0
def system(config):
    """Return an LJ system with long-range corrections and (optionally)
       an optimized potential.

    config -- the configuration
    """
    sys = feasst.System()
    sys.add(config)
    sys.add(feasst.Potential(feasst.MakeLennardJones()))
    sys.add(feasst.Potential(feasst.MakeLongRangeCorrections()))
    # If the requested cell list spacing is not large enough for the box, the cell list will
    # be disabled even if a cell list was requested previously.
    if sys.configuration().domain().is_cell_enabled():
        # While adding a potential is by default considered an "unoptimized"
        # potential, a system may also contain an optimized potential.
        # Optimized potentials are used for most energy calculations, but
        # CheckEnergy asserts that it is equivalent to the unoptimized
        # potential.
        sys.add_to_optimized(
            feasst.Potential(feasst.MakeLennardJones(),
                             feasst.MakeVisitModelCell()))
        sys.add_to_optimized(
            feasst.Potential(feasst.MakeLongRangeCorrections()))
        # While the cell list is optimized, the LRCs are not. Regardless, the LRCs are added so
        # that the energy is equivalent to the unoptimized potentials.
    return sys
コード例 #3
0
def lj_system(box_length, cutoff):
    system = feasst.System()
    config = feasst.Configuration(
        feasst.MakeDomain(feasst.args({"cubic_box_length": str(box_length)})),
        feasst.args(
            {"particle_type": feasst.install_dir() + "/forcefield/lj.fstprt"}))
    config.set_model_param("cutoff", 0, cutoff)
    system.add(config)
    system.add(feasst.Potential(feasst.MakeLennardJones()))
    if system.configuration().domain().is_cell_enabled():
        #system.add_to_optimized(feasst.Potential(feasst.MakeLennardJones(), feasst.MakeVisitModelCell()))
        system.add_to_reference(
            feasst.Potential(feasst.MakeHardSphere(),
                             feasst.MakeVisitModelCell()))
    return system
コード例 #4
0
def lj_system(box_length):
    system = feasst.System()
    config = feasst.Configuration(
        feasst.Domain(feasst.args({"cubic_box_length": str(box_length)})),
        feasst.args({"particle_type": feasst.install_dir() + "/forcefield/lj.fstprt"}))
    config.set_model_param("cutoff", 0, args.cutoff)
    system.add(config)
    system.add(feasst.Potential(feasst.MakeLennardJones()))
    return system
コード例 #5
0
def system(config=None,
           box_length=8.109613,
           alphaL=6.870983963962610000,
           kmax_squared=38,
           rcut=4.891304347826090):
    if not config:
        config = feasst.Configuration(
            feasst.MakeDomain(
                feasst.args({"cubic_box_length": str(box_length)})),
            feasst.args({
                "particle_type0":
                feasst.install_dir() +
                "/plugin/ewald/forcefield/data.rpm_plus",
                "particle_type1":
                feasst.install_dir() +
                "/plugin/ewald/forcefield/data.rpm_minus"
            }))
    config.set_model_param("cutoff", 0, rcut)
    config.set_model_param("cutoff", 1, rcut)
    system = feasst.System()
    system.add(config)
    system.add(
        feasst.Potential(
            feasst.MakeEwald(
                feasst.args({
                    "kmax_squared":
                    str(kmax_squared),
                    "alpha":
                    str(alphaL /
                        system.configuration().domain().min_side_length())
                }))))
    # Unfortunatley, swig isn't accepting the below method of constructing a two body factory
    #    system.add(feasst.Potential(feasst.MakeModelTwoBodyFactory(
    #        feasst.ModelTwoBodyVector([feasst.MakeLennardJones(), feasst.MakeChargeScreened()]))))
    two = feasst.MakeModelTwoBodyFactory()
    two.add(feasst.MakeHardSphere())
    two.add(feasst.MakeChargeScreened())
    system.add(feasst.Potential(two))
    system.add(feasst.Potential(feasst.MakeChargeSelf()))
    # system.precompute()
    return system
コード例 #6
0
def mc(thread, mn, mx):
    mc = fst.MakeMonteCarlo()
    mc.set(fst.MakeRandomMT19937(fst.args({"seed": "123"})))
    mc.add(
        fst.MakeConfiguration(
            fst.args({
                "side_length0": str(args.lx),
                "side_length1": str(args.ly),
                "side_length2": str(args.lz),
                "particle_type0": args.particle
            })))
    for site_type in range(mc.configuration().num_site_types()):
        mc.get_system().get_configuration().set_model_param(
            "cutoff", site_type, args.cutoff)
    mc.add(fst.MakePotential(fst.MakeLennardJones()))
    mc.add(
        fst.MakePotential(fst.MakeLennardJones(),
                          fst.MakeVisitModelIntra(fst.args({"cutoff": "4"}))))
    mc.add(fst.MakePotential(fst.MakeLongRangeCorrections()))
    if mx > args.dccb_begin:
        reference = fst.Potential(
            fst.MakeLennardJones(),
            fst.MakeVisitModelCell(
                fst.args({"min_length": str(args.dccb_cutoff)})))
        reference.set_model_params(mc.configuration())
        for site_type in range(mc.configuration().num_site_types()):
            reference.set_model_param("cutoff", site_type, args.dccb_cutoff)
        mc.add_to_reference(reference)
        #mc.add_to_reference(fst.MakePotential(fst.MakeLennardJones(),
        #                    fst.MakeVisitModelIntra(fst.args({"cutoff": "4"}))))
        stage_args = {"reference_index": "0", "num_steps": "4"}
    else:
        mc.add_to_reference(fst.MakePotential(fst.DontVisitModel()))
        stage_args = {"reference_index": "0", "num_steps": "1"}
    beta = 1. / fst.kelvin2kJpermol(args.temperature)
    mc.set(
        fst.MakeThermoParams(
            fst.args({
                "beta": str(beta),
                "chemical_potential0": str(args.beta_mu / beta)
            })))
    mc.set(fst.MakeMetropolis())
    mc.add(fst.MakeTrialTranslate(fst.args({"weight": "0.5"})))
    mc.add(fst.MakeTrialRotate(fst.args({"weight": "0.5"})))

    print('thread', thread, 'mn', mn, 'mx', mx)
    if thread == 0 and mn > 0:
        mc.add(fst.MakeTrialAdd(fst.args({"particle_type": "0"})))
        mc.run(fst.MakeRun(fst.args({"until_num_particles": str(mn)})))
        mc.run(fst.RemoveTrial(fst.args({"name": "TrialAdd"})))

    mc.set(
        fst.MakeFlatHistogram(
            fst.MakeMacrostateNumParticles(
                fst.Histogram(
                    fst.args({
                        "width": "1",
                        "max": str(mx),
                        "min": str(mn)
                    }))),
            # fst.MakeTransitionMatrix(fst.args({"min_sweeps": str(args.sweeps)})),
            fst.MakeWLTM(
                fst.args({
                    "collect_flatness": str(args.collect_flatness),
                    "min_flatness": str(args.min_flatness),
                    "min_sweeps": "1000"
                }))))
    # configurational bias with TrialGrow: full and partial regrows from 0-site, and reverse
    num_sites = mc.configuration().particle_type(0).num_sites()
    for site in range(num_sites):
        for g in gen_grow(num_sites, reptate=False):
            mc.add(
                fst.MakeTrialGrow(
                    fst.ArgsVector(add_particle_type_weight(
                        site, num_sites, g)), fst.args(stage_args)))

    # reptation
    if num_sites > 3:
        for g in gen_grow(num_sites, reptate=True):
            mc.add(
                fst.MakeTrialGrow(
                    fst.ArgsVector(add_particle_type_weight(0, num_sites, g)),
                    fst.args(stage_args)))

    # these moves may not take bond energies into consideration properly. Instead, should implement a dihedral rotation.
    #mc.add(fst.MakeTrialCrankshaft(fst.args(dict({"weight": "0.25", "tunable_param": "25.", "max_length": "5."}, **stage_args))))
    #mc.add(fst.MakeTrialPivot(fst.args(dict({"weight": "0.25", "tunable_param": "25.", "max_length": "5."}, **stage_args))))

    mc.add(
        fst.MakeCheckEnergy(
            fst.args({
                "steps_per": str(args.steps_per),
                "tolerance": "0.0001"
            })))
    mc.add(
        fst.MakeTune(
            fst.args({
                "steps_per": str(args.steps_per),
                "stop_after_phase": "0"
            })))
    mc.add(
        fst.MakeLogAndMovie(
            fst.args({
                "steps_per": str(args.steps_per),
                "file_name": "clones" + str(thread),
                "file_name_append_phase": "True"
            })))
    mc.add(
        fst.MakeEnergy(
            fst.args({
                "file_name": "en" + str(thread) + '.txt',
                "file_name_append_phase": "True",
                "start_after_phase": "0",
                "steps_per_write": str(args.steps_per),
                "steps_per_update": "1",
                "multistate": "True"
            })))
    mc.add(
        fst.MakeCriteriaUpdater(fst.args({"steps_per": str(args.steps_per)})))
    mc.add(
        fst.MakeCriteriaWriter(
            fst.args({
                "steps_per": str(args.steps_per),
                "file_name": "clones" + str(thread) + "_crit.txt",
                "file_name_append_phase": "True"
            })))
    mc.set(
        fst.MakeCheckpoint(
            fst.args({
                "file_name":
                "checkpoint" + str(thread) + ".fst",
                "num_hours_terminate":
                str(0.9 * args.num_procs * args.num_hours)
            })))
    return mc
コード例 #7
0
import feasst

monte_carlo = feasst.MonteCarlo()
monte_carlo.set(feasst.MakeRandomMT19937(feasst.args({"seed": "time"})))
monte_carlo.add(
    feasst.Configuration(
        feasst.MakeDomain(feasst.args({"cubic_box_length": "8"})),
        feasst.args(
            {"particle_type": feasst.install_dir() + "/forcefield/data.lj"})))
monte_carlo.add(feasst.Potential(feasst.MakeLennardJones()))
monte_carlo.add(feasst.Potential(feasst.MakeLongRangeCorrections()))
monte_carlo.add(feasst.MakeMetropolis(feasst.args({"beta": "1.5"})))
monte_carlo.add(
    feasst.MakeTrialTranslate(
        feasst.args({
            "tunable_param": "2.",
            "tunable_target_acceptance": "0.2"
        })))
steps_per = int(1e3)
monte_carlo.add(feasst.MakeTuner(feasst.args({"steps_per": str(steps_per)})))
feasst.SeekNumParticles(50)\
    .with_metropolis(feasst.args({"beta": "0.1", "chemical_potential": "10"}))\
    .with_trial_add().run(monte_carlo)
monte_carlo.add(feasst.MakeLog(feasst.args({"steps_per": str(steps_per)})))
monte_carlo.add(
    feasst.MakeMovie(
        feasst.args({
            "steps_per": str(steps_per),
            "file_name": "movie.xyz"
        })))
monte_carlo.add(
コード例 #8
0
def mc(thread, mn, mx):
    steps_per = int(1e4)
    mc = fst.MakeMonteCarlo()
    if mx > args.dccb_begin:
        ref = "0"
        num = "4"
    else:
        ref = "-1"
        num = "1"
    config_args = dict()
    index = 0
    thermo_params = {"beta": str(1. / args.temperature)}
    for part in args.particles:
        config_args["particle_type" + str(index)] = part
        thermo_params["chemical_potential" + str(index)] = str(
            args.beta_mu * args.temperature)
        index += 1
    thermo_params["chemical_potential0"] = str(
        (args.delta_betamu_0 + args.beta_mu) * args.temperature)
    mc.add(
        fst.MakeConfiguration(
            fst.args(
                dict(
                    {
                        "side_length0": str(args.lx),
                        "side_length1": str(args.ly),
                        "side_length2": str(args.lz)
                    }, **config_args))))
    mc.add(fst.MakePotential(fst.MakeLennardJones()))
    mc.add(fst.MakePotential(fst.MakeLongRangeCorrections()))
    if mx > args.dccb_begin:
        reference = fst.Potential(
            fst.MakeLennardJones(),
            fst.MakeVisitModelCell(
                fst.args({"min_length": str(args.dccb_cutoff)})))
        reference.set_model_params(mc.configuration())
        for site_type in range(mc.configuration().num_site_types()):
            reference.set_model_param("cutoff", site_type, args.dccb_cutoff)
        mc.add_to_reference(reference)
    mc.set(fst.MakeThermoParams(thermo_params))
    mc.set(
        fst.MakeFlatHistogram(
            fst.MakeMacrostateNumParticles(
                fst.Histogram(
                    fst.args({
                        "width": "1",
                        "max": str(mx),
                        "min": str(mn)
                    }))),
            # fst.MakeTransitionMatrix(fst.args({"min_sweeps": str(args.sweeps)})),
            fst.MakeWLTM(
                fst.args({
                    "collect_flatness": str(args.collect_flatness),
                    "min_flatness": str(args.min_flatness),
                    "min_sweeps": "1000"
                }))))
    for particle_type in range(mc.configuration().num_particle_types()):
        mc.add(
            fst.MakeTrialTranslate(
                fst.args({
                    "particle_type": str(particle_type),
                    "weight": "1.",
                    "tunable_param": "1."
                })))
        if mx > args.dccb_begin and mc.configuration().particle_type(
                particle_type).num_sites() == 2:
            mc.add(
                fst.MakeTrialGrow(
                    fst.ArgsVector([
                        {
                            "transfer":
                            "true",  # "regrow": "true",  # regrow isn't very efficient
                            "particle_type": str(particle_type),
                            "site": "0",
                            "weight": "4"
                        },
                        {
                            "bond": "true",
                            "mobile_site": "1",
                            "anchor_site": "0"
                        }
                    ]),
                    fst.args({
                        "reference_index": ref,
                        "num_steps": num
                    })))
            mc.add(
                fst.MakeTrialGrow(
                    fst.ArgsVector([{
                        "particle_type": str(particle_type),
                        "weight": "0.5",
                        "bond": "true",
                        "mobile_site": "1",
                        "anchor_site": "0",
                        "reference_index": ref,
                        "num_steps": num
                    }])))
            mc.add(
                fst.MakeTrialGrow(
                    fst.ArgsVector([{
                        "particle_type": str(particle_type),
                        "weight": "0.5",
                        "bond": "true",
                        "mobile_site": "0",
                        "anchor_site": "1",
                        "reference_index": ref,
                        "num_steps": num
                    }])))
        else:
            mc.add(
                fst.MakeTrialRotate(
                    fst.args({
                        "particle_type": str(particle_type),
                        "weight": "1.",
                        "tunable_param": "1."
                    })))
            mc.add(
                fst.MakeTrialTransfer(
                    fst.args({
                        "particle_type": str(particle_type),
                        "weight": "4"
                    })))
    mc.add(
        fst.MakeCheckEnergy(
            fst.args({
                "steps_per": str(steps_per),
                "tolerance": "0.0001"
            })))
    mc.add(
        fst.MakeTune(
            fst.args({
                "steps_per": str(steps_per),
                "stop_after_phase": "0"
            })))
    mc.add(
        fst.MakeLogAndMovie(
            fst.args({
                "steps_per": str(steps_per),
                "file_name": "clones" + str(thread),
                "file_name_append_phase": "True"
            })))
    mc.add(
        fst.MakeEnergy(
            fst.args({
                "file_name": "en" + str(thread) + '.txt',
                "file_name_append_phase": "True",
                "start_after_phase": "0",
                "steps_per_write": str(steps_per),
                "steps_per_update": "1",
                "multistate": "True"
            })))
    if mc.configuration().num_particle_types() > 1:
        mc.add(
            fst.MakeNumParticles(
                fst.args({
                    "particle_type": "0",
                    "file_name": "num" + str(thread) + '.txt',
                    "file_name_append_phase": "True",
                    "start_after_phase": "0",
                    "steps_per_write": str(steps_per),
                    "steps_per_update": "1",
                    "multistate": "True"
                })))
    mc.add(
        fst.MakeExtensiveMoments(
            fst.args({
                "steps_per_write": str(steps_per),
                "file_name": "extmom" + str(thread) + ".txt",
                "file_name_append_phase": "True",
                "start_after_phase":
                "0",  # do not update until equilibration complete (phase 1)
                "max_order": "3",
                "multistate": "True"
            })))
    mc.add(fst.MakeCriteriaUpdater(fst.args({"steps_per": str(steps_per)})))
    mc.add(
        fst.MakeCriteriaWriter(
            fst.args({
                "steps_per": str(steps_per),
                "file_name": "clones" + str(thread) + "_crit.txt",
                "file_name_append_phase": "True"
            })))
    print(0.9 * args.num_procs * args.num_hours)
    mc.set(
        fst.MakeCheckpoint(
            fst.args({
                "file_name":
                "checkpoint" + str(thread) + ".fst",
                "num_hours_terminate":
                str(0.9 * args.num_procs * args.num_hours)
            })))
    return mc