コード例 #1
0
def pa_column_to_proto_column(
    feast_value_type: ValueType, column: pa.lib.ChunkedArray
) -> List[ProtoValue]:
    type_map: Dict[ValueType, Union[str, Dict[str, Any]]] = {
        ValueType.INT32: "int32_val",
        ValueType.INT64: "int64_val",
        ValueType.FLOAT: "float_val",
        ValueType.DOUBLE: "double_val",
        ValueType.STRING: "string_val",
        ValueType.BYTES: "bytes_val",
        ValueType.BOOL: "bool_val",
        ValueType.BOOL_LIST: {"bool_list_val": BoolList},
        ValueType.BYTES_LIST: {"bytes_list_val": BytesList},
        ValueType.STRING_LIST: {"string_list_val": StringList},
        ValueType.FLOAT_LIST: {"float_list_val": FloatList},
        ValueType.DOUBLE_LIST: {"double_list_val": DoubleList},
        ValueType.INT32_LIST: {"int32_list_val": Int32List},
        ValueType.INT64_LIST: {"int64_list_val": Int64List},
    }

    value: Union[str, Dict[str, Any]] = type_map[feast_value_type]
    # Process list types
    if isinstance(value, dict):
        list_param_name = list(value.keys())[0]
        return [
            ProtoValue(**{list_param_name: value[list_param_name](val=x.as_py())})
            for x in column
        ]
    else:
        return [ProtoValue(**{value: x.as_py()}) for x in column]
コード例 #2
0
def _python_value_to_proto_value(feast_value_type, value) -> ProtoValue:
    """
    Converts a Python (native, pandas) value to a Feast Proto Value based
    on a provided value type

    Args:
        feast_value_type: The target value type
        value: Value that will be converted

    Returns:
        Feast Value Proto
    """

    # Detect list type and handle separately
    if "list" in feast_value_type.name.lower():

        if feast_value_type == ValueType.FLOAT_LIST:
            return ProtoValue(float_list_val=FloatList(val=[
                item if type(item) in
                [np.float32, np.float64] else _type_err(item, np.float32)
                for item in value
            ]))

        if feast_value_type == ValueType.DOUBLE_LIST:
            return ProtoValue(double_list_val=DoubleList(val=[
                item if type(item) in
                [np.float64, np.float32] else _type_err(item, np.float64)
                for item in value
            ]))

        if feast_value_type == ValueType.INT32_LIST:
            return ProtoValue(int32_list_val=Int32List(val=[
                item if type(item) is np.int32 else _type_err(item, np.int32)
                for item in value
            ]))

        if feast_value_type == ValueType.INT64_LIST:
            return ProtoValue(int64_list_val=Int64List(val=[
                item if type(item) in
                [np.int64, np.int32] else _type_err(item, np.int64)
                for item in value
            ]))

        if feast_value_type == ValueType.STRING_LIST:
            return ProtoValue(string_list_val=StringList(val=[
                item if type(item) in
                [np.str_, str] else _type_err(item, np.str_) for item in value
            ]))

        if feast_value_type == ValueType.BOOL_LIST:
            return ProtoValue(bool_list_val=BoolList(val=[
                item if type(item) in
                [np.bool_, bool] else _type_err(item, np.bool_)
                for item in value
            ]))

        if feast_value_type == ValueType.BYTES_LIST:
            return ProtoValue(bytes_list_val=BytesList(val=[
                item if type(item) in
                [np.bytes_, bytes] else _type_err(item, np.bytes_)
                for item in value
            ]))

    # Handle scalar types below
    else:
        if pd.isnull(value):
            return ProtoValue()
        elif feast_value_type == ValueType.INT32:
            return ProtoValue(int32_val=int(value))
        elif feast_value_type == ValueType.INT64:
            return ProtoValue(int64_val=int(value))
        elif feast_value_type == ValueType.FLOAT:
            return ProtoValue(float_val=float(value))
        elif feast_value_type == ValueType.DOUBLE:
            assert type(value) is float or np.float64
            return ProtoValue(double_val=value)
        elif feast_value_type == ValueType.STRING:
            return ProtoValue(string_val=str(value))
        elif feast_value_type == ValueType.BYTES:
            assert type(value) is bytes
            return ProtoValue(bytes_val=value)
        elif feast_value_type == ValueType.BOOL:
            assert type(value) is bool
            return ProtoValue(bool_val=value)

    raise Exception(f"Unsupported data type: ${str(type(value))}")
コード例 #3
0
def pd_value_to_proto_value(feast_value_type, value) -> ProtoValue:

    # Detect list type and handle separately
    if "list" in feast_value_type.name.lower():

        if feast_value_type == ValueType.FLOAT_LIST:
            return ProtoValue(float_list_val=FloatList(val=[
                item if type(item) is np.float32 else type_err(
                    item, np.float32) for item in value
            ]))

        if feast_value_type == ValueType.DOUBLE_LIST:
            return ProtoValue(double_list_val=DoubleList(val=[
                item if type(item) is np.float64 else type_err(
                    item, np.float64) for item in value
            ]))

        if feast_value_type == ValueType.INT32_LIST:
            return ProtoValue(int32_list_val=Int32List(val=[
                item if type(item) is np.int32 else type_err(item, np.int32)
                for item in value
            ]))

        if feast_value_type == ValueType.INT64_LIST:
            return ProtoValue(int64_list_val=Int64List(val=[
                item if type(item) is np.int64 else type_err(item, np.int64)
                for item in value
            ]))

        if feast_value_type == ValueType.STRING_LIST:
            return ProtoValue(string_list_val=StringList(val=[
                item if type(item) is np.str_ else type_err(item, np.str_)
                for item in value
            ]))

        if feast_value_type == ValueType.BOOL_LIST:
            return ProtoValue(bool_list_val=BoolList(val=[
                item if type(item) is np.bool_ else type_err(item, np.bool_)
                for item in value
            ]))

        if feast_value_type == ValueType.BYTES_LIST:
            return ProtoValue(bytes_list_val=BytesList(val=[
                item if type(item) is np.bytes_ else type_err(item, np.bytes_)
                for item in value
            ]))

    # Handle scalar types below
    else:
        if pd.isnull(value):
            return ProtoValue()
        elif feast_value_type == ValueType.INT32:
            return ProtoValue(int32_val=int(value))
        elif feast_value_type == ValueType.INT64:
            return ProtoValue(int64_val=int(value))
        elif feast_value_type == ValueType.FLOAT:
            return ProtoValue(float_val=float(value))
        elif feast_value_type == ValueType.DOUBLE:
            assert type(value) is float
            return ProtoValue(double_val=value)
        elif feast_value_type == ValueType.STRING:
            return ProtoValue(string_val=str(value))
        elif feast_value_type == ValueType.BYTES:
            assert type(value) is bytes
            return ProtoValue(bytes_val=value)
        elif feast_value_type == ValueType.BOOL:
            assert type(value) is bool
            return ProtoValue(bool_val=value)

    raise Exception(f"Unsupported data type: ${str(type(value))}")