コード例 #1
0
def test_online_retrieval(environment, universal_data_sources, benchmark):

    fs = environment.feature_store
    entities, datasets, data_sources = universal_data_sources
    feature_views = construct_universal_feature_views(data_sources)

    feature_service = FeatureService(
        "convrate_plus100",
        features=[
            feature_views["driver"][["conv_rate"]],
            feature_views["driver_odfv"]
        ],
    )

    feast_objects = []
    feast_objects.extend(feature_views.values())
    feast_objects.extend([driver(), customer(), location(), feature_service])
    fs.apply(feast_objects)
    fs.materialize(environment.start_date, environment.end_date)

    sample_drivers = random.sample(entities["driver"], 10)

    sample_customers = random.sample(entities["customer"], 10)

    entity_rows = [{
        "driver": d,
        "customer_id": c,
        "val_to_add": 50
    } for (d, c) in zip(sample_drivers, sample_customers)]

    feature_refs = [
        "driver_stats:conv_rate",
        "driver_stats:avg_daily_trips",
        "customer_profile:current_balance",
        "customer_profile:avg_passenger_count",
        "customer_profile:lifetime_trip_count",
        "conv_rate_plus_100:conv_rate_plus_100",
        "conv_rate_plus_100:conv_rate_plus_val_to_add",
        "global_stats:num_rides",
        "global_stats:avg_ride_length",
    ]
    unprefixed_feature_refs = [
        f.rsplit(":", 1)[-1] for f in feature_refs if ":" in f
    ]
    # Remove the on demand feature view output features, since they're not present in the source dataframe
    unprefixed_feature_refs.remove("conv_rate_plus_100")
    unprefixed_feature_refs.remove("conv_rate_plus_val_to_add")

    benchmark(
        fs.get_online_features,
        features=feature_refs,
        entity_rows=entity_rows,
    )
コード例 #2
0
def test_read_pre_applied() -> None:
    """
    Read feature values from the FeatureStore using a FeatureService.
    """
    runner = CliRunner()
    with runner.local_repo(get_example_repo("example_feature_repo_1.py"),
                           "bigquery") as store:

        assert len(store.list_feature_services()) == 1
        fs = store.get_feature_service("driver_locations_service")
        assert len(fs.tags) == 1
        assert fs.tags["release"] == "production"

        fv = store.get_feature_view("driver_locations")

        fs = FeatureService(name="new_feature_service", features=[fv[["lon"]]])

        store.apply([fs])

        assert len(store.list_feature_services()) == 2
        store.get_feature_service("new_feature_service")
コード例 #3
0
def test_online_retrieval(environment, universal_data_sources,
                          full_feature_names):
    fs = environment.feature_store
    entities, datasets, data_sources = universal_data_sources
    feature_views = construct_universal_feature_views(data_sources)

    feature_service = FeatureService(
        "convrate_plus100",
        features=[
            feature_views.driver[["conv_rate"]],
            feature_views.driver_odfv,
            feature_views.customer[["current_balance"]],
        ],
    )
    feature_service_entity_mapping = FeatureService(
        name="entity_mapping",
        features=[
            feature_views.location.with_name("origin").with_join_key_map(
                {"location_id": "origin_id"}),
            feature_views.location.with_name("destination").with_join_key_map(
                {"location_id": "destination_id"}),
        ],
    )

    feast_objects = []
    feast_objects.extend(feature_views.values())
    feast_objects.extend([
        driver(),
        customer(),
        location(),
        feature_service,
        feature_service_entity_mapping,
    ])
    fs.apply(feast_objects)
    fs.materialize(
        environment.start_date - timedelta(days=1),
        environment.end_date + timedelta(days=1),
    )

    entity_sample = datasets.orders_df.sample(10)[[
        "customer_id", "driver_id", "order_id", "event_timestamp"
    ]]
    orders_df = datasets.orders_df[(
        datasets.orders_df["customer_id"].isin(entity_sample["customer_id"])
        & datasets.orders_df["driver_id"].isin(entity_sample["driver_id"]))]

    sample_drivers = entity_sample["driver_id"]
    drivers_df = datasets.driver_df[datasets.driver_df["driver_id"].isin(
        sample_drivers)]

    sample_customers = entity_sample["customer_id"]
    customers_df = datasets.customer_df[
        datasets.customer_df["customer_id"].isin(sample_customers)]

    location_pairs = np.array(
        list(itertools.permutations(entities.location_vals, 2)))
    sample_location_pairs = location_pairs[np.random.choice(
        len(location_pairs), 10)].T.tolist()
    origins_df = datasets.location_df[datasets.location_df["location_id"].isin(
        sample_location_pairs[0])]
    destinations_df = datasets.location_df[
        datasets.location_df["location_id"].isin(sample_location_pairs[1])]

    global_df = datasets.global_df

    entity_rows = [{
        "driver_id": d,
        "customer_id": c,
        "val_to_add": 50
    } for (d, c) in zip(sample_drivers, sample_customers)]

    feature_refs = [
        "driver_stats:conv_rate",
        "driver_stats:avg_daily_trips",
        "customer_profile:current_balance",
        "customer_profile:avg_passenger_count",
        "customer_profile:lifetime_trip_count",
        "conv_rate_plus_100:conv_rate_plus_100",
        "conv_rate_plus_100:conv_rate_plus_val_to_add",
        "order:order_is_success",
        "global_stats:num_rides",
        "global_stats:avg_ride_length",
    ]
    unprefixed_feature_refs = [
        f.rsplit(":", 1)[-1] for f in feature_refs if ":" in f
    ]
    # Remove the on demand feature view output features, since they're not present in the source dataframe
    unprefixed_feature_refs.remove("conv_rate_plus_100")
    unprefixed_feature_refs.remove("conv_rate_plus_val_to_add")

    online_features_dict = get_online_features_dict(
        environment=environment,
        features=feature_refs,
        entity_rows=entity_rows,
        full_feature_names=full_feature_names,
    )

    # Test that the on demand feature views compute properly even if the dependent conv_rate
    # feature isn't requested.
    online_features_no_conv_rate = get_online_features_dict(
        environment=environment,
        features=[
            ref for ref in feature_refs if ref != "driver_stats:conv_rate"
        ],
        entity_rows=entity_rows,
        full_feature_names=full_feature_names,
    )

    assert online_features_no_conv_rate is not None

    keys = set(online_features_dict.keys())
    expected_keys = set(
        f.replace(":", "__") if full_feature_names else f.split(":")[-1]
        for f in feature_refs) | {"customer_id", "driver_id"}
    assert (
        keys == expected_keys
    ), f"Response keys are different from expected: {keys - expected_keys} (extra) and {expected_keys - keys} (missing)"

    tc = unittest.TestCase()
    for i, entity_row in enumerate(entity_rows):
        df_features = get_latest_feature_values_from_dataframes(
            driver_df=drivers_df,
            customer_df=customers_df,
            orders_df=orders_df,
            global_df=global_df,
            entity_row=entity_row,
        )

        assert df_features["customer_id"] == online_features_dict[
            "customer_id"][i]
        assert df_features["driver_id"] == online_features_dict["driver_id"][i]
        tc.assertAlmostEqual(
            online_features_dict[response_feature_name("conv_rate_plus_100",
                                                       feature_refs,
                                                       full_feature_names)][i],
            df_features["conv_rate"] + 100,
            delta=0.0001,
        )
        tc.assertAlmostEqual(
            online_features_dict[response_feature_name(
                "conv_rate_plus_val_to_add", feature_refs,
                full_feature_names)][i],
            df_features["conv_rate"] + df_features["val_to_add"],
            delta=0.0001,
        )
        for unprefixed_feature_ref in unprefixed_feature_refs:
            tc.assertAlmostEqual(
                df_features[unprefixed_feature_ref],
                online_features_dict[response_feature_name(
                    unprefixed_feature_ref, feature_refs,
                    full_feature_names)][i],
                delta=0.0001,
            )

    # Check what happens for missing values
    missing_responses_dict = get_online_features_dict(
        environment=environment,
        features=feature_refs,
        entity_rows=[{
            "driver_id": 0,
            "customer_id": 0,
            "val_to_add": 100
        }],
        full_feature_names=full_feature_names,
    )
    assert missing_responses_dict is not None
    for unprefixed_feature_ref in unprefixed_feature_refs:
        if unprefixed_feature_ref not in {"num_rides", "avg_ride_length"}:
            tc.assertIsNone(missing_responses_dict[response_feature_name(
                unprefixed_feature_ref, feature_refs, full_feature_names)][0])

    # Check what happens for missing request data
    with pytest.raises(RequestDataNotFoundInEntityRowsException):
        get_online_features_dict(
            environment=environment,
            features=feature_refs,
            entity_rows=[{
                "driver_id": 0,
                "customer_id": 0
            }],
            full_feature_names=full_feature_names,
        )

    assert_feature_service_correctness(
        environment,
        feature_service,
        entity_rows,
        full_feature_names,
        drivers_df,
        customers_df,
        orders_df,
        global_df,
    )

    entity_rows = [{
        "origin_id": origin,
        "destination_id": destination
    } for (_driver, _customer, origin, destination
           ) in zip(sample_drivers, sample_customers, *sample_location_pairs)]
    assert_feature_service_entity_mapping_correctness(
        environment,
        feature_service_entity_mapping,
        entity_rows,
        full_feature_names,
        origins_df,
        destinations_df,
    )
コード例 #4
0
ファイル: materialize.py プロジェクト: Shopify/feast
)

benchmark_feature_views = [
    FeatureView(
        name=f"feature_view_{i}",
        entities=["entity"],
        ttl=Duration(seconds=86400),
        features=[
            Feature(name=f"feature_{10 * i + j}", dtype=ValueType.INT64)
            for j in range(10)
        ],
        online=True,
        batch_source=generated_data_source,
    ) for i in range(25)
]

benchmark_feature_service = FeatureService(
    name=f"benchmark_feature_service",
    features=benchmark_feature_views,
)

fs = FeatureStore(".")
fs.apply([
    driver_hourly_stats_view, driver, entity, benchmark_feature_service,
    *benchmark_feature_views
])

now = datetime.now()
fs.materialize(start, now)
print("Materialization finished")
コード例 #5
0
customer_profile = FeatureView(
    name="customer_profile",
    entities=["customer"],
    ttl=timedelta(days=1),
    features=[
        Feature(name="avg_orders_day", dtype=ValueType.FLOAT),
        Feature(name="name", dtype=ValueType.STRING),
        Feature(name="age", dtype=ValueType.INT64),
    ],
    online=True,
    batch_source=customer_profile_source,
    tags={},
)

customer_driver_combined = FeatureView(
    name="customer_driver_combined",
    entities=["customer", "driver"],
    ttl=timedelta(days=1),
    features=[Feature(name="trips", dtype=ValueType.INT64)],
    online=True,
    batch_source=customer_driver_combined_source,
    tags={},
)


all_drivers_feature_service = FeatureService(
    name="driver_locations_service",
    features=[driver_locations],
    tags={"release": "production"},
)
コード例 #6
0
ファイル: test_universal_online.py プロジェクト: qooba/feast
def test_online_retrieval(environment, universal_data_sources,
                          full_feature_names):

    fs = environment.feature_store
    entities, datasets, data_sources = universal_data_sources
    feature_views = construct_universal_feature_views(data_sources)

    feature_service = FeatureService(
        "convrate_plus100",
        features=[
            feature_views["driver"][["conv_rate"]],
            feature_views["driver_odfv"],
            feature_views["driver_age_request_fv"],
        ],
    )
    feature_service_entity_mapping = FeatureService(
        name="entity_mapping",
        features=[
            feature_views["location"].with_name("origin").with_join_key_map(
                {"location_id": "origin_id"}),
            feature_views["location"].with_name(
                "destination").with_join_key_map(
                    {"location_id": "destination_id"}),
        ],
    )

    feast_objects = []
    feast_objects.extend(feature_views.values())
    feast_objects.extend([
        driver(),
        customer(),
        location(),
        feature_service,
        feature_service_entity_mapping,
    ])
    fs.apply(feast_objects)
    fs.materialize(
        environment.start_date - timedelta(days=1),
        environment.end_date + timedelta(days=1),
    )

    entity_sample = datasets["orders"].sample(10)[[
        "customer_id", "driver_id", "order_id", "event_timestamp"
    ]]
    orders_df = datasets["orders"][(
        datasets["orders"]["customer_id"].isin(entity_sample["customer_id"])
        & datasets["orders"]["driver_id"].isin(entity_sample["driver_id"]))]

    sample_drivers = entity_sample["driver_id"]
    drivers_df = datasets["driver"][datasets["driver"]["driver_id"].isin(
        sample_drivers)]

    sample_customers = entity_sample["customer_id"]
    customers_df = datasets["customer"][datasets["customer"]
                                        ["customer_id"].isin(sample_customers)]

    location_pairs = np.array(
        list(itertools.permutations(entities["location"], 2)))
    sample_location_pairs = location_pairs[np.random.choice(
        len(location_pairs), 10)].T
    origins_df = datasets["location"][datasets["location"]["location_id"].isin(
        sample_location_pairs[0])]
    destinations_df = datasets["location"][
        datasets["location"]["location_id"].isin(sample_location_pairs[1])]

    global_df = datasets["global"]

    entity_rows = [{
        "driver": d,
        "customer_id": c,
        "val_to_add": 50,
        "driver_age": 25
    } for (d, c) in zip(sample_drivers, sample_customers)]

    feature_refs = [
        "driver_stats:conv_rate",
        "driver_stats:avg_daily_trips",
        "customer_profile:current_balance",
        "customer_profile:avg_passenger_count",
        "customer_profile:lifetime_trip_count",
        "conv_rate_plus_100:conv_rate_plus_100",
        "conv_rate_plus_100:conv_rate_plus_val_to_add",
        "order:order_is_success",
        "global_stats:num_rides",
        "global_stats:avg_ride_length",
        "driver_age:driver_age",
    ]
    unprefixed_feature_refs = [
        f.rsplit(":", 1)[-1] for f in feature_refs if ":" in f
    ]
    # Remove the on demand feature view output features, since they're not present in the source dataframe
    unprefixed_feature_refs.remove("conv_rate_plus_100")
    unprefixed_feature_refs.remove("conv_rate_plus_val_to_add")

    online_features = fs.get_online_features(
        features=feature_refs,
        entity_rows=entity_rows,
        full_feature_names=full_feature_names,
    )
    assert online_features is not None

    online_features_dict = online_features.to_dict()
    keys = online_features_dict.keys()
    assert (
        len(keys) == len(feature_refs) + 3
    )  # Add three for the driver id and the customer id entity keys + val_to_add request data.
    for feature in feature_refs:
        # full_feature_names does not apply to request feature views
        if full_feature_names and feature != "driver_age:driver_age":
            assert feature.replace(":", "__") in keys
        else:
            assert feature.rsplit(":", 1)[-1] in keys
            assert ("driver_stats" not in keys
                    and "customer_profile" not in keys and "order" not in keys
                    and "global_stats" not in keys)

    tc = unittest.TestCase()
    for i, entity_row in enumerate(entity_rows):
        df_features = get_latest_feature_values_from_dataframes(
            driver_df=drivers_df,
            customer_df=customers_df,
            orders_df=orders_df,
            global_df=global_df,
            entity_row=entity_row,
        )

        assert df_features["customer_id"] == online_features_dict[
            "customer_id"][i]
        assert df_features["driver_id"] == online_features_dict["driver_id"][i]
        tc.assertAlmostEqual(
            online_features_dict[response_feature_name("conv_rate_plus_100",
                                                       full_feature_names)][i],
            df_features["conv_rate"] + 100,
            delta=0.0001,
        )
        tc.assertAlmostEqual(
            online_features_dict[response_feature_name(
                "conv_rate_plus_val_to_add", full_feature_names)][i],
            df_features["conv_rate"] + df_features["val_to_add"],
            delta=0.0001,
        )
        for unprefixed_feature_ref in unprefixed_feature_refs:
            tc.assertAlmostEqual(
                df_features[unprefixed_feature_ref],
                online_features_dict[response_feature_name(
                    unprefixed_feature_ref, full_feature_names)][i],
                delta=0.0001,
            )

    # Check what happens for missing values
    missing_responses_dict = fs.get_online_features(
        features=feature_refs,
        entity_rows=[{
            "driver": 0,
            "customer_id": 0,
            "val_to_add": 100,
            "driver_age": 125
        }],
        full_feature_names=full_feature_names,
    ).to_dict()
    assert missing_responses_dict is not None
    for unprefixed_feature_ref in unprefixed_feature_refs:
        if unprefixed_feature_ref not in {
                "num_rides", "avg_ride_length", "driver_age"
        }:
            tc.assertIsNone(missing_responses_dict[response_feature_name(
                unprefixed_feature_ref, full_feature_names)][0])

    # Check what happens for missing request data
    with pytest.raises(RequestDataNotFoundInEntityRowsException):
        fs.get_online_features(
            features=feature_refs,
            entity_rows=[{
                "driver": 0,
                "customer_id": 0
            }],
            full_feature_names=full_feature_names,
        ).to_dict()

    # Also with request data
    with pytest.raises(RequestDataNotFoundInEntityRowsException):
        fs.get_online_features(
            features=feature_refs,
            entity_rows=[{
                "driver": 0,
                "customer_id": 0,
                "val_to_add": 20
            }],
            full_feature_names=full_feature_names,
        ).to_dict()

    assert_feature_service_correctness(
        fs,
        feature_service,
        entity_rows,
        full_feature_names,
        drivers_df,
        customers_df,
        orders_df,
        global_df,
    )

    entity_rows = [{
        "driver": driver,
        "customer_id": customer,
        "origin_id": origin,
        "destination_id": destination,
    } for (driver, customer, origin, destination
           ) in zip(sample_drivers, sample_customers, *sample_location_pairs)]
    assert_feature_service_entity_mapping_correctness(
        fs,
        feature_service_entity_mapping,
        entity_rows,
        full_feature_names,
        drivers_df,
        customers_df,
        orders_df,
        origins_df,
        destinations_df,
    )
コード例 #7
0
def test_feature_service_with_description():
    feature_service = FeatureService(name="my-feature-service",
                                     features=[],
                                     description="a clear description")
    assert feature_service.to_proto().spec.description == "a clear description"
コード例 #8
0
def test_feature_service_without_description():
    feature_service = FeatureService(name="my-feature-service", features=[])
    #
    assert feature_service.to_proto().spec.description == ""
コード例 #9
0
def test_online_retrieval(environment, universal_data_sources, full_feature_names):

    fs = environment.feature_store
    entities, datasets, data_sources = universal_data_sources
    feature_views = construct_universal_feature_views(data_sources)

    feature_service = FeatureService(
        "convrate_plus100",
        features=[feature_views["driver"][["conv_rate"]], feature_views["driver_odfv"]],
    )

    feast_objects = []
    feast_objects.extend(feature_views.values())
    feast_objects.extend([driver(), customer(), feature_service])
    fs.apply(feast_objects)
    fs.materialize(
        environment.start_date - timedelta(days=1),
        environment.end_date + timedelta(days=1),
    )

    entity_sample = datasets["orders"].sample(10)[
        ["customer_id", "driver_id", "order_id", "event_timestamp"]
    ]
    orders_df = datasets["orders"][
        (
            datasets["orders"]["customer_id"].isin(entity_sample["customer_id"])
            & datasets["orders"]["driver_id"].isin(entity_sample["driver_id"])
        )
    ]

    sample_drivers = entity_sample["driver_id"]
    drivers_df = datasets["driver"][
        datasets["driver"]["driver_id"].isin(sample_drivers)
    ]

    sample_customers = entity_sample["customer_id"]
    customers_df = datasets["customer"][
        datasets["customer"]["customer_id"].isin(sample_customers)
    ]

    global_df = datasets["global"]

    entity_rows = [
        {"driver": d, "customer_id": c, "val_to_add": 50}
        for (d, c) in zip(sample_drivers, sample_customers)
    ]

    feature_refs = [
        "driver_stats:conv_rate",
        "driver_stats:avg_daily_trips",
        "customer_profile:current_balance",
        "customer_profile:avg_passenger_count",
        "customer_profile:lifetime_trip_count",
        "conv_rate_plus_100:conv_rate_plus_100",
        "conv_rate_plus_100:conv_rate_plus_val_to_add",
        "order:order_is_success",
        "global_stats:num_rides",
        "global_stats:avg_ride_length",
    ]
    unprefixed_feature_refs = [f.rsplit(":", 1)[-1] for f in feature_refs if ":" in f]
    # Remove the on demand feature view output features, since they're not present in the source dataframe
    unprefixed_feature_refs.remove("conv_rate_plus_100")
    unprefixed_feature_refs.remove("conv_rate_plus_val_to_add")

    online_features = fs.get_online_features(
        features=feature_refs,
        entity_rows=entity_rows,
        full_feature_names=full_feature_names,
    )
    assert online_features is not None

    online_features_dict = online_features.to_dict()
    keys = online_features_dict.keys()
    assert (
        len(keys) == len(feature_refs) + 3
    )  # Add three for the driver id and the customer id entity keys + val_to_add request data.
    for feature in feature_refs:
        if full_feature_names:
            assert feature.replace(":", "__") in keys
        else:
            assert feature.rsplit(":", 1)[-1] in keys
            assert (
                "driver_stats" not in keys
                and "customer_profile" not in keys
                and "order" not in keys
                and "global_stats" not in keys
            )

    tc = unittest.TestCase()
    for i, entity_row in enumerate(entity_rows):
        df_features = get_latest_feature_values_from_dataframes(
            drivers_df, customers_df, orders_df, global_df, entity_row
        )

        assert df_features["customer_id"] == online_features_dict["customer_id"][i]
        assert df_features["driver_id"] == online_features_dict["driver_id"][i]
        assert (
            online_features_dict[
                response_feature_name("conv_rate_plus_100", full_feature_names)
            ][i]
            == df_features["conv_rate"] + 100
        )
        assert (
            online_features_dict[
                response_feature_name("conv_rate_plus_val_to_add", full_feature_names)
            ][i]
            == df_features["conv_rate"] + df_features["val_to_add"]
        )
        for unprefixed_feature_ref in unprefixed_feature_refs:
            tc.assertEqual(
                df_features[unprefixed_feature_ref],
                online_features_dict[
                    response_feature_name(unprefixed_feature_ref, full_feature_names)
                ][i],
            )

    # Check what happens for missing values
    missing_responses_dict = fs.get_online_features(
        features=feature_refs,
        entity_rows=[{"driver": 0, "customer_id": 0, "val_to_add": 100}],
        full_feature_names=full_feature_names,
    ).to_dict()
    assert missing_responses_dict is not None
    for unprefixed_feature_ref in unprefixed_feature_refs:
        if unprefixed_feature_ref not in {"num_rides", "avg_ride_length"}:
            tc.assertIsNone(
                missing_responses_dict[
                    response_feature_name(unprefixed_feature_ref, full_feature_names)
                ][0]
            )

    # Check what happens for missing request data
    with pytest.raises(RequestDataNotFoundInEntityRowsException):
        fs.get_online_features(
            features=feature_refs,
            entity_rows=[{"driver": 0, "customer_id": 0}],
            full_feature_names=full_feature_names,
        ).to_dict()

    assert_feature_service_correctness(
        fs,
        feature_service,
        entity_rows,
        full_feature_names,
        drivers_df,
        customers_df,
        orders_df,
        global_df,
    )
コード例 #10
0
def feature_service(name: str, views) -> FeatureService:
    return FeatureService(name, views)
コード例 #11
0
ファイル: features.py プロジェクト: feast-dev/feast
    df["transaction_gt_last_credit_card_due"] = (
        inputs["transaction_amt"] > inputs["credit_card_due"]
    )
    return df


# Define request feature view
transaction_request_fv = RequestFeatureView(
    name="transaction_request_fv", request_data_source=input_request,
)

model_v1 = FeatureService(
    name="credit_score_v1",
    features=[
        credit_history[["mortgage_due", "credit_card_due", "missed_payments_1y"]],
        zipcode_features,
    ],
    tags={"owner": "*****@*****.**", "stage": "staging"},
    description="Credit scoring model",
)

model_v2 = FeatureService(
    name="credit_score_v2",
    features=[
        credit_history[["mortgage_due", "credit_card_due", "missed_payments_1y"]],
        zipcode_features,
        transaction_request_fv,
    ],
    tags={"owner": "*****@*****.**", "stage": "prod"},
    description="Credit scoring model",
)
コード例 #12
0
ファイル: example.py プロジェクト: feast-dev/feast
    event_timestamp_column="event_timestamp",
    created_timestamp_column="created",
)

# Define an entity for the driver. You can think of entity as a primary key used to
# fetch features.
driver = Entity(
    name="driver_id",
    value_type=ValueType.INT64,
    description="driver id",
)

# Our parquet files contain sample data that includes a driver_id column, timestamps and
# three feature column. Here we define a Feature View that will allow us to serve this
# data to our model online.
driver_hourly_stats_view = FeatureView(
    name="driver_hourly_stats",
    entities=["driver_id"],
    ttl=Duration(seconds=86400 * 365 * 10),
    features=[
        Feature(name="conv_rate", dtype=ValueType.FLOAT),
        Feature(name="acc_rate", dtype=ValueType.FLOAT),
        Feature(name="avg_daily_trips", dtype=ValueType.INT64),
    ],
    online=True,
    batch_source=driver_hourly_stats,
    tags={},
)

driver_stats_fs = FeatureService(name="test_service",
                                 features=[driver_hourly_stats_view])