コード例 #1
0
            if int(''.join(curentday.split('-'))) == int(''.join("2019-10-27".split('-'))):
                curentday = datetime.datetime.strptime(curentday,"%Y-%m-%d") + datetime.timedelta(days=1)
                curentday = curentday.strftime("%Y-%m-%d")
                continue 
            try:
                iiter =0
                #从flaskapp log日志中,.1 .2 两个文件,提取出  两个 txt
                applog = os.path.join(PATH,logfile.format(curentday))
                viewclickfile = handle_log.log(applog, curentday)

                #从两个TXT  提取 csv
                train_base = handle_train.generate_train_base(curentday,viewclickfile)
                #train_base = os.path.join(PATH,"train_base/train_base--2019-09-01.csv")

                #  结合 mysql数据中 储存的数据,出  训练数据
                train_data = feature.get_data_with_pandas(train_base, batch_size)
              
                
                lr = 0.001
                loss_sum = 0.0
                accuracy_sum = 0.0 
                break_cnt = 1
                
                flag = True
                #一天就93个数据吗,每次取一个batch
                for i in range(epoches):
                    for data_pre in train_data:

                        data_ = prepare_data(data_pre)
                        data_["lr_ph"] = lr
                        
コード例 #2
0
        import handle_log

        begin = time.time()
        handle_log.log(file, day)
        print(day, "handle log costs: ", time.time() - begin)

        import handle_train

        begin = time.time()
        train_base = handle_train.generate_train_base(day)
        print(day, "handle train_base costs: ", time.time() - begin)

        import feature

        begin = time.time()
        train_data = feature.get_data_with_pandas(train_base, 128)
        print(day, "handle feature costs: ", time.time() - begin)

        import model

        begin = time.time()
        mol = model.SimpleModel()
        with tf.Session(graph=mol.graph) as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())

            iiter = utils.get_max_model_num(MODLE_PATH)
            if iiter != -1:
                mol.restore(sess,
                            os.path.join(MODLE_PATH, "ckpt_") + str(iiter))
            if iiter == -1: