def predict(m, fs, signal, da): try: feat = mix_feature((fs, signal)) feat = da.get_hidden_values(feat).eval() except Exception as e: return None return m.gmmset.predict_one(feat)
def enroll(self, name, fs, signal): """ add the signal to this person's training dataset name: person's name """ feat = mix_feature((fs, signal)) self.features[name].extend(feat)
def predict(self, fs, signal): try: feat = mix_feature((fs, signal)) except Exception as e: print tb.format_exc() return None return self.gmmset.predict_one(feat)
def predict(self, fs, signal): """ return a label (name) """ try: feat = mix_feature((fs, signal)) except Exception as e: print(tb.format_exc()) return None return self.gmmset.predict_one(feat)
def predict_scores(self, fs, signal): """ return scores """ try: feat = mix_feature((fs, signal)) except Exception as e: print tb.format_exc() return None return self.gmmset.predict_scores(feat)
def predict(m, fs, signal, da, up_bound, lower_bound): try: feat = mix_feature((fs, signal)) # put all values into -1~1 for i in xrange(len(feat)): for j in xrange(len(feat[0])): feat[i][j] = 2*((feat[i][j]-lower_bound[j]) / (up_bound[j]-lower_bound[j]))-1 feat = da.get_hidden_values(feat).eval() except Exception as e: return None return m.gmmset.predict_one(feat)
def predict_with_score(self, fs, signal): """ return a label (name) """ try: feat = mix_feature((fs, signal)) except Exception as e: print tb.format_exc() return None # gmmset = GMMSet() = gmmset.GMMSetPyGMM return self.gmmset.predict_one_with_score(feat)
def test_model(mods,path = "./tmp.wav"): fs, signal = read_wav(path) feat = mix_feature((fs, signal)) x = feat scores = [mods.gmmset.gmm_score(gmm, x) / len(x) for gmm in mods.gmmset.gmms] import operator p = sorted(enumerate(scores), key=operator.itemgetter(1), reverse=True) p = [(str(mods.gmmset.y[i]), y, p[0][1] - y) for i, y in p] result = [(mods.gmmset.y[index], value) for (index, value) in enumerate(scores)] p = max(result, key=operator.itemgetter(1)) return result
def predict(self, fs, signal): """ return a label (name) """ try: feat = mix_feature((fs, signal)) except Exception as e: print tb.format_exc() return None try: return self.gmmset.predict_one_with_score(feat) except: print "Unexpected error:", sys.exc_info()[0]
def predict(self, fs, signal, reject=False): from gmmset import GMMSetPyGMM if GMMSet is not GMMSetPyGMM: reject = False try: feat = mix_feature((fs, signal)) except Exception as e: print tb.format_exc() return None if reject: try: return self.gmmset.predict_one_with_rejection(feat) except Exception as e: print tb.format_exc() return self.gmmset.predict_one(feat)
def predict(self, fs, signal, reject=False): from gmmset import GMMSetPyGMM if GMMSet is not GMMSetPyGMM: reject = False try: feat = mix_feature((fs, signal)) except Exception as e: print str(e) return None if reject: try: l = self.gmmset.predict_one_with_rejection(feat) return l except Exception as e: print str(e) return self.gmmset.predict_one(feat)
def predict(self, fs, signal, reject=False): from gmmset import GMMSetPyGMM if GMMSet is not GMMSetPyGMM: reject = False print "Length of signal to predict:", len(signal) try: feat = mix_feature((fs, signal)) except Exception as e: print str(e) return None if reject: try: l = self.gmmset.predict_one_with_rejection(feat) return l except Exception as e: print str(e) return self.gmmset.predict_one(feat)
def predict(self, fs, signal): feat = mix_feature((fs, signal)) return self.gmmset.predict_one(feat)
def enroll(self, name, fs, signal): feat = mix_feature((fs, signal)) self.features[name].extend(feat)
def enroll(self, name, fs, signal): feat = mix_feature((fs, signal)) #pdb.set_trace() self.features[name].extend(feat)