コード例 #1
0
 def __init__(self, params, graph, dir_path, gpu, device):
     self._params = params
     self._graph = graph
     self._dir_path = dir_path
     self._mp = MotifProbability(self._params["vertices"],
                                 self._params["probability"],
                                 self._params["clique_size"],
                                 self._params["directed"])
     self._motif_mat = None
     self._motif_features = {
         "motif3":
         FeatureMeta(nth_nodes_motif(3, gpu=gpu, device=device), {"m3"}),
         "motif4":
         FeatureMeta(nth_nodes_motif(4, gpu=gpu, device=device), {"m4"})
     }
コード例 #2
0
 def _calc_motif3(self, gpu, device):
     if self._dir_path != "":
         if os.path.exists(os.path.join(self._dir_path, "motif3.pkl")):
             pkl3 = pickle.load(
                 open(os.path.join(self._dir_path, "motif3.pkl"), "rb"))
             if type(pkl3) == dict:
                 return pkl3
             elif type(pkl3) == list:
                 motif3 = {v: pkl3[v] for v in range(len(pkl3))}
                 return motif3
             else:
                 motif3 = pkl3._features
                 motif3dict = {v: motif3[v] for v in range(len(motif3))}
                 return motif3dict
     (graph, vertices_dict) = (self._graph, {v: v for v in self._graph.nodes()}) if not \
         sorted(list(self._graph.nodes()))[-1] != len(self._graph) - 1 else self._relabel_graph()
     raw_ftr = GraphFeatures(graph, {
         "motif3":
         FeatureMeta(nth_nodes_motif(3, gpu=gpu, device=device), {"m3"})
     },
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True if self._dir_path != "" else False)
     motif3 = raw_ftr['motif3']._features
     motif3dict = {
         vertices_dict[v]: motif3[v]
         for v in range(len(vertices_dict))
     }
     return motif3dict
コード例 #3
0
 def _calc_betweenness(self):
     raw_ftr = GraphFeatures(self._graph,
                             {"betweenness": FeatureMeta(BetweennessCentralityCalculator, {"betweenness"})},
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature_dict = raw_ftr["betweenness"]._features
     feature_mx = np.zeros((len(feature_dict), 1))
     for i in feature_dict.keys():
         feature_mx[i] = feature_dict[i]
     return self._log_norm(feature_mx)
コード例 #4
0
 def _calc_bfs(self):
     raw_ftr = GraphFeatures(
         self._graph,
         {"bfs_moments": FeatureMeta(BfsMomentsCalculator, {"bfs"})},
         dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature_dict = raw_ftr["bfs_moments"]._features
     feature_mx = np.zeros(
         (len(feature_dict), len(list(feature_dict.values())[0][0])))
     for i in feature_dict.keys():
         for j in range(len(feature_dict[i][0])):
             feature_mx[i, j] = feature_dict[i][0][j]
     return self._log_norm(feature_mx)
コード例 #5
0
 def _calc_motif3(self):
     raw_ftr = GraphFeatures(self._graph, {
         "motif3":
         FeatureMeta(nth_nodes_motif(3, gpu=self._gpu, device=self._device),
                     {"m3"})
     },
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=self._dump)
     feature = raw_ftr['motif3']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     return self._log_norm(motif_matrix)
コード例 #6
0
 def _calc_motif4(self):
     # FOR NOW, NO GPU FOR US
     if os.path.exists(os.path.join(self._dir_path, "motif4.pkl")):
         pkl4 = pickle.load(
             open(os.path.join(self._dir_path, "motif4.pkl"), "rb"))
         if type(pkl4) == dict:
             motif4 = self._to_matrix(pkl4)
         elif type(pkl4) == MotifsNodeCalculator:
             motif4 = np.array(pkl4._features)
         else:
             motif4 = np.array(pkl4)
         if self._motif_choice == "All_Motifs":
             mp = MotifProbability(self._params['vertices'],
                                   self._params['probability'],
                                   self._params['clique_size'],
                                   self._params['directed'])
             motif3_count = 1 + mp.get_3_clique_motifs(3)[
                 -1]  # The full 3 clique is the last motif 3.
             clique_motifs = [
                 m - motif3_count for m in mp.get_3_clique_motifs(4)
             ]
             return motif4[:, clique_motifs]
         else:
             return motif4
     raw_ftr = GraphFeatures(self._graph, {
         "motif4":
         FeatureMeta(nth_nodes_motif(4, gpu=self._gpu, device=self._device),
                     {"m4"})
     },
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif4']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'],
                               self._params['probability'],
                               self._params['clique_size'],
                               self._params['directed'])
         motif3_count = 1 + mp.get_3_clique_motifs(3)[
             -1]  # The full 3 clique is the last motif 3.
         clique_motifs = [
             m - motif3_count for m in mp.get_3_clique_motifs(4)
         ]
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix
コード例 #7
0
 def _calc_bfs(self):
     raw_ftr = GraphFeatures(
         self._graph,
         {"bfs_moments": FeatureMeta(BfsMomentsCalculator, {"bfs"})},
         dir_path="")
     raw_ftr.build(should_dump=False)
     feat = raw_ftr["bfs_moments"]._features
     if type(feat) == list:
         feature_mx = np.array(feat)
     else:
         feature_mx = np.zeros((len(feat), len(list(feat.values())[0][0])))
         for i in feat.keys():
             for j in range(len(feat[i][0])):
                 feature_mx[i, j] = feat[i][0][j]
     return self._log_norm(feature_mx)
コード例 #8
0
 def _calc_motif4(self):
     raw_ftr = GraphFeatures(self._graph, {
         "motif4":
         FeatureMeta(nth_nodes_motif(4, gpu=self._gpu, device=self._device),
                     {"m4"})
     },
                             dir_path="")
     raw_ftr.build(should_dump=False)
     feature = raw_ftr['motif4']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     return normed_matrix
コード例 #9
0
 def _calc_motif3(self):
     raw_ftr = GraphFeatures(self._graph,
                             {"motif3": FeatureMeta(nth_nodes_motif(3, gpu=self._gpu, device=self._device), {"m3"})},
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif3']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'], self._params['probability'],
                               self._params['subgraph_size'], self._params['directed'])
         clique_motifs = mp.get_3_clique_motifs(3)
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix
コード例 #10
0
 def _calc_motif4(self):
     raw_ftr = GraphFeatures(self._graph,
                             {"motif4": FeatureMeta(nth_nodes_motif(4, gpu=self._gpu, device=self._device), {"m4"})},
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif4']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'], self._params['probability'],
                               self._params['subgraph_size'], self._params['directed'])
         motif3_count = 1 + mp.get_3_clique_motifs(3)[-1]  # The full 3 clique is the last motif 3.
         clique_motifs = [m - motif3_count for m in mp.get_3_clique_motifs(4)]
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix
コード例 #11
0
 def _calc_motif3(self):
     # FOR NOW, NO GPU FOR US
     if os.path.exists(os.path.join(self._dir_path, "motif3.pkl")):
         pkl3 = pickle.load(
             open(os.path.join(self._dir_path, "motif3.pkl"), "rb"))
         if type(pkl3) == dict:
             motif3 = self._to_matrix(pkl3)
         elif type(pkl3) == MotifsNodeCalculator:
             motif3 = np.array(pkl3._features)
         else:
             motif3 = np.array(pkl3)
         if self._motif_choice == "All_Motifs":
             mp = MotifProbability(self._params['vertices'],
                                   self._params['probability'],
                                   self._params['clique_size'],
                                   self._params['directed'])
             clique_motifs = mp.get_3_clique_motifs(3)
             return motif3[:, clique_motifs]
         else:
             return motif3
     raw_ftr = GraphFeatures(self._graph, {
         "motif3":
         FeatureMeta(nth_nodes_motif(3, gpu=self._gpu, device=self._device),
                     {"m3"})
     },
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif3']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'],
                               self._params['probability'],
                               self._params['clique_size'],
                               self._params['directed'])
         clique_motifs = mp.get_3_clique_motifs(3)
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix
コード例 #12
0
from vertices.bfs_moments import BfsMomentsCalculator
from vertices.closeness_centrality import ClosenessCentralityCalculator
from vertices.communicability_betweenness_centrality import CommunicabilityBetweennessCentralityCalculator
from vertices.eccentricity import EccentricityCalculator
from vertices.fiedler_vector import FiedlerVectorCalculator
from vertices.flow import FlowCalculator
from vertices.general import GeneralCalculator
from vertices.hierarchy_energy import HierarchyEnergyCalculator
from vertices.k_core import KCoreCalculator
from vertices.load_centrality import LoadCentralityCalculator
from vertices.louvain import LouvainCalculator
from vertices.motifs import nth_nodes_motif

ANOMALY_DETECTION_FEATURES = {
    "attractor_basin":
    FeatureMeta(AttractorBasinCalculator, {"ab"}),  # directed only
    "average_neighbor_degree":
    FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),
    "betweenness_centrality":
    FeatureMeta(BetweennessCentralityCalculator, {"betweenness"}),
    "bfs_moments":
    FeatureMeta(BfsMomentsCalculator, {"bfs"}),
    "closeness_centrality":
    FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),
    # "communicability_betweenness_centrality": FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
    #                                                       {"communicability"}),
    "eccentricity":
    FeatureMeta(EccentricityCalculator, {"ecc"}),
    "fiedler_vector":
    FeatureMeta(FiedlerVectorCalculator, {"fv"}),
    # "flow": FeatureMeta(FlowCalculator, {}),
コード例 #13
0
from vertices.bfs_moments import BfsMomentsCalculator
from vertices.closeness_centrality import ClosenessCentralityCalculator
from vertices.communicability_betweenness_centrality import CommunicabilityBetweennessCentralityCalculator
from vertices.eccentricity import EccentricityCalculator
from vertices.fiedler_vector import FiedlerVectorCalculator
from vertices.general import GeneralCalculator
from vertices.hierarchy_energy import HierarchyEnergyCalculator
from vertices.k_core import KCoreCalculator
from vertices.load_centrality import LoadCentralityCalculator
from vertices.louvain import LouvainCalculator
from vertices.motifs import nth_nodes_motif
from vertices.page_rank import PageRankCalculator

ANOMALY_DETECTION_FEATURES = {
    "attractor_basin":
    FeatureMeta(AttractorBasinCalculator, {"ab"}),  # directed only
    "average_neighbor_degree":
    FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),
    "betweenness_centrality":
    FeatureMeta(BetweennessCentralityCalculator, {"betweenness"}),
    # "bfs_moments": FeatureMeta(BfsMomentsCalculator, {"bfs"}),
    # "closeness_centrality": FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),
    # "communicability_betweenness_centrality": FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
    #                                                       {"communicability"}),
    "eccentricity":
    FeatureMeta(EccentricityCalculator, {"ecc"}),
    "fiedler_vector":
    FeatureMeta(FiedlerVectorCalculator, {"fv"}),
    # "flow": FeatureMeta(FlowCalculator, {}),
    "general":
    FeatureMeta(GeneralCalculator, {"gen"}),
コード例 #14
0
import os
from betweenness_centrality import BetweennessCentralityCalculator
from bfs_moments import BfsMomentsCalculator
from feature_calculators import FeatureMeta

CODE_DIR = "code"
DATA_INPUT_DIR = "dataset_input"
PKL_DIR = "pkl"
FEATURES_PKL_DIR = os.path.join(PKL_DIR, "features")
NORM_REDUCED = "_REDUCED_"
NORM_REDUCED_SYMMETRIC = "_REDUCED_SYMMETRIC_"

DEG = "_DEGREE_"
IN_DEG = "_IN_DEGREE_"
OUT_DEG = "_OUT_DEGREE_"
CENTRALITY = ["betweenness_centrality", FeatureMeta(BetweennessCentralityCalculator, {"betweenness"})]
BFS = ["bfs_moments", FeatureMeta(BfsMomentsCalculator, {"bfs"})]


class FactorLoss:
    def __init__(self):
        self._begin_low_limit = 0  # 0 .. 1
        self._end_low_limit = 0.3  # 0.5 .. 1
        self._interval = 1e-4

        self._curr_start = self._begin_low_limit
        self._curr_epoch = 0

    def factor_loss(self, output, target, jump=False):
        # scale = 1 - self._curr_start
        # shift = 1 - scale
コード例 #15
0
    # "average_neighbor_degree": FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),
    # "betweenness_centrality": FeatureMeta(BetweennessCentralityCalculator, {"betweenness"}),
    # "bfs_moments": FeatureMeta(BfsMomentsCalculator, {"bfs"}),
    # "closeness_centrality": FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),
    # "communicability_betweenness_centrality": FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
    #                                                       {"communicability"}),
    # "eccentricity": FeatureMeta(EccentricityCalculator, {"ecc"}),
    # "fiedler_vector": FeatureMeta(FiedlerVectorCalculator, {"fv"}),
    # "flow": FeatureMeta(FlowCalculator, {}),
    # "general": FeatureMeta(GeneralCalculator, {"gen"}),
    # Isn't OK - also in previous version
    # "hierarchy_energy": FeatureMeta(HierarchyEnergyCalculator, {"hierarchy"}),
    # "k_core": FeatureMeta(KCoreCalculator, {"kc"}),
    # "load_centrality": FeatureMeta(LoadCentralityCalculator, {"load_c"}),
    # "louvain": FeatureMeta(LouvainCalculator, {"lov"}),
    "motif3": FeatureMeta(nth_nodes_motif(3), {"m3"}),
    # "multi_dimensional_scaling": FeatureMeta(MultiDimensionalScalingCalculator, {"mds"}),
    # "page_rank": FeatureMeta(PageRankCalculator, {"pr"}),
    "motif4": FeatureMeta(nth_nodes_motif(4), {"m4"}),
    # "first_neighbor_histogram": FeatureMeta(nth_neighbor_calculator(1), {"fnh", "first_neighbor"}),
    # "second_neighbor_histogram": FeatureMeta(nth_neighbor_calculator(2), {"snh", "second_neighbor"}),
}

SOURCE = 'SourceID'
DEST = 'DestinationID'
DURATION = 'Duration'
TIME = 'StartTime'
COMMUNITY = 'Community'
TARGET = 'target'

ALL_BETA_PATH = "all_times_beta"
コード例 #16
0
For more information, please read the README in the git.
"""

CODE_DIR = "code"
DATA_INPUT_DIR = "dataset_input"
PKL_DIR = "pkl"
FEATURES_PKL_DIR = os.path.join(PKL_DIR, "features")
NORM_REDUCED = "_REDUCED_"
NORM_REDUCED_SYMMETRIC = "_REDUCED_SYMMETRIC_"

DEG = "_DEGREE_"
IN_DEG = "_IN_DEGREE_"
OUT_DEG = "_OUT_DEGREE_"
CENTRALITY = [
    "betweenness_centrality",
    FeatureMeta(BetweennessCentralityCalculator, {"betweenness"})
]
BFS = ["bfs_moments", FeatureMeta(BfsMomentsCalculator, {"bfs"})]


class FactorLoss:
    def __init__(self):
        self._begin_low_limit = 0  # 0 .. 1
        self._end_low_limit = 0.3  # 0.5 .. 1
        self._interval = 1e-4

        self._curr_start = self._begin_low_limit
        self._curr_epoch = 0

    def factor_loss(self, output, target, jump=False):
        # scale = 1 - self._curr_start
コード例 #17
0
from vertices.closeness_centrality import ClosenessCentralityCalculator
from vertices.communicability_betweenness_centrality import CommunicabilityBetweennessCentralityCalculator
from vertices.eccentricity import EccentricityCalculator
from vertices.fiedler_vector import FiedlerVectorCalculator
from vertices.flow import FlowCalculator
from vertices.general import GeneralCalculator
from vertices.hierarchy_energy import HierarchyEnergyCalculator
from vertices.k_core import KCoreCalculator
from vertices.load_centrality import LoadCentralityCalculator
from vertices.louvain import LouvainCalculator
from vertices.motifs import nth_nodes_motif
from vertices.multi_dimensional_scaling import MultiDimensionalScalingCalculator
from vertices.page_rank import PageRankCalculator

ANOMALY_DETECTION_FEATURES = {
    "attractor_basin": FeatureMeta(AttractorBasinCalculator, {"ab"}),  # directed only
    "average_neighbor_degree": FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),
    "betweenness_centrality": FeatureMeta(BetweennessCentralityCalculator, {"betweenness"}),
    "bfs_moments": FeatureMeta(BfsMomentsCalculator, {"bfs"}),
    "closeness_centrality": FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),
    # "communicability_betweenness_centrality": FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
    #                                                       {"communicability"}),
    "eccentricity": FeatureMeta(EccentricityCalculator, {"ecc"}),
    "fiedler_vector": FeatureMeta(FiedlerVectorCalculator, {"fv"}),
    # "flow": FeatureMeta(FlowCalculator, {}),
    "general": FeatureMeta(GeneralCalculator, {"gen"}),
    # Isn't OK - also in previous version
    # "hierarchy_energy": FeatureMeta(HierarchyEnergyCalculator, {"hierarchy"}),
    "k_core": FeatureMeta(KCoreCalculator, {"kc"}),
    "load_centrality": FeatureMeta(LoadCentralityCalculator, {"load_c"}),
    "louvain": FeatureMeta(LouvainCalculator, {"lov"}),
コード例 #18
0
    def __init__(self, gpu=False, device=0):
        self.NODE_LEVEL = {
            "attractor_basin":
            FeatureMeta(AttractorBasinCalculator, {"ab"}),  # Directed
            "average_neighbor_degree":
            FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),  # Any
            "betweenness_centrality":
            FeatureMeta(BetweennessCentralityCalculator,
                        {"betweenness"}),  # Any
            "bfs_moments":
            FeatureMeta(BfsMomentsCalculator, {"bfs"}),  # Any
            "closeness_centrality":
            FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),  # Any
            "communicability_betweenness_centrality":
            FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
                        {"communicability"}),  # Undirected
            "eccentricity":
            FeatureMeta(EccentricityCalculator, {"ecc"}),  # Any
            "fiedler_vector":
            FeatureMeta(FiedlerVectorCalculator,
                        {"fv"}),  # Undirected (due to a code limitation)
            "flow":
            FeatureMeta(FlowCalculator, {}),  # Directed
            # General - calculating degrees. Directed will get (in_deg, out_deg) and undirected will get degree only per vertex.
            "general":
            FeatureMeta(GeneralCalculator, {"gen"}),  # Any
            "hierarchy_energy":
            FeatureMeta(HierarchyEnergyCalculator,
                        {"hierarchy"}),  # Directed (but works for any)
            "k_core":
            FeatureMeta(KCoreCalculator, {"kc"}),  # Any
            "load_centrality":
            FeatureMeta(LoadCentralityCalculator, {"load_c"}),  # Any
            "louvain":
            FeatureMeta(LouvainCalculator, {"lov"}),  # Undirected
            "motif3":
            FeatureMeta(nth_nodes_motif(3, gpu, device), {"m3"}),  # Any
            "page_rank":
            FeatureMeta(PageRankCalculator,
                        {"pr"}),  # Directed (but works for any)
            "motif4":
            FeatureMeta(nth_nodes_motif(4, gpu, device), {"m4"}),  # Any
        }

        self.MOTIFS = {
            "motif3": FeatureMeta(nth_nodes_motif(3, gpu, device), {"m3"}),
            "motif4": FeatureMeta(nth_nodes_motif(4, gpu, device), {"m4"})
        }
        """
コード例 #19
0
    def __init__(self, gpu=False):
        self.NODE_LEVEL = {
            "attractor_basin":
            FeatureMeta(AttractorBasinCalculator, {"ab"}),
            "average_neighbor_degree":
            FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),
            "betweenness_centrality":
            FeatureMeta(BetweennessCentralityCalculator, {"betweenness"}),
            "bfs_moments":
            FeatureMeta(BfsMomentsCalculator, {"bfs"}),
            "closeness_centrality":
            FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),
            "communicability_betweenness_centrality":
            FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
                        {"communicability"}),
            "eccentricity":
            FeatureMeta(EccentricityCalculator, {"ecc"}),
            "fiedler_vector":
            FeatureMeta(FiedlerVectorCalculator, {"fv"}),
            "flow":
            FeatureMeta(FlowCalculator, {}),
            "general":
            FeatureMeta(GeneralCalculator, {"gen"}),
            "hierarchy_energy":
            FeatureMeta(HierarchyEnergyCalculator, {"hierarchy"}),
            "k_core":
            FeatureMeta(KCoreCalculator, {"kc"}),
            "load_centrality":
            FeatureMeta(LoadCentralityCalculator, {"load_c"}),
            "louvain":
            FeatureMeta(LouvainCalculator, {"lov"}),
            "motif3":
            FeatureMeta(nth_nodes_motif(3, gpu), {"m3"}),
            "page_rank":
            FeatureMeta(PageRankCalculator, {"pr"}),
            "motif4":
            FeatureMeta(nth_nodes_motif(4, gpu), {"m4"}),
        }

        self.MOTIFS = {
            "motif3": FeatureMeta(nth_nodes_motif(3, gpu), {"m3"}),
            "motif4": FeatureMeta(nth_nodes_motif(4, gpu), {"m4"})
        }
コード例 #20
0
from vertices.closeness_centrality import ClosenessCentralityCalculator
from vertices.communicability_betweenness_centrality import CommunicabilityBetweennessCentralityCalculator
from vertices.eccentricity import EccentricityCalculator
from vertices.fiedler_vector import FiedlerVectorCalculator
from vertices.flow import FlowCalculator
from vertices.general import GeneralCalculator
from vertices.k_core import KCoreCalculator
from vertices.load_centrality import LoadCentralityCalculator
from vertices.louvain import LouvainCalculator
from vertices.motifs import nth_nodes_motif
from vertices.multi_dimensional_scaling import MultiDimensionalScalingCalculator
from vertices.page_rank import PageRankCalculator

ANOMALY_DETECTION_FEATURES = {
    "attractor_basin":
    FeatureMeta(AttractorBasinCalculator, {"ab"}),
    "average_neighbor_degree":
    FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),
    "betweenness_centrality":
    FeatureMeta(BetweennessCentralityCalculator, {"betweenness"}),
    "bfs_moments":
    FeatureMeta(BfsMomentsCalculator, {"bfs"}),
    "closeness_centrality":
    FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),
    # "communicability_betweenness_centrality": FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
    #                                                       {"communicability"}),
    "eccentricity":
    FeatureMeta(EccentricityCalculator, {"ecc"}),
    "fiedler_vector":
    FeatureMeta(FiedlerVectorCalculator, {"fv"}),
    "flow":