def test_non_fitted_error(df_vartypes): with pytest.raises(NotFittedError): transformer = YeoJohnsonTransformer() transformer.transform(df_vartypes)
def test_transform_raises_error_if_na_in_df(df_vartypes, df_na): # test case 3: when dataset contains na, transform method with pytest.raises(ValueError): transformer = YeoJohnsonTransformer() transformer.fit(df_vartypes) transformer.transform(df_na[["Name", "City", "Age", "Marks", "dob"]])
verbose=1, patience=10, min_lr=0.01) early_stop = EarlyStopping(monitor='val_loss', mode='min', min_delta=0, verbose=1, patience=20) pump_pipeline = Pipeline( steps=[("feature_to_keeper", pp.FeatureKeeper(variables_to_keep=config.VARIABLES_TO_KEEP)), ("missing_imputer", pp.MissingImputer(numerical_variables=config.NUMERICAL_VARIABLES)), ("yeoJohnson", YeoJohnsonTransformer(variables=config.YEO_JHONSON_VARIABLES)), ("discretization", EqualWidthDiscretiser(bins=5, variables=config.NUMERICAL_VARIABLES) ), ("categorical_grouper", pp.CategoricalGrouping(config_dict=config.VARIABLES_TO_GROUP)), ("rareCategories_grouper", pp.RareCategoriesGrouping(threshold=config.VARIABLES_THRESHOLD)), ("one_hot_encoder", OneHotEncoder(variables=config.REAL_CATEGORICAL_VARIABLES, drop_last=False)), ("scaler", MinMaxScaler()), ("model", KerasClassifier(build_fn=create_model, epochs=1, validation_split=0.2, batch_size=256,
def test_fit_raises_error_if_na_in_df(df_na): # test case 2: when dataset contains na, fit method with pytest.raises(ValueError): transformer = YeoJohnsonTransformer() transformer.fit(df_na)
from tests.estimator_checks.estimator_checks import check_feature_engine_estimator from feature_engine.transformation import ( BoxCoxTransformer, LogCpTransformer, ArcsinTransformer, LogTransformer, PowerTransformer, ReciprocalTransformer, YeoJohnsonTransformer, ) _estimators = [ BoxCoxTransformer(), LogTransformer(), LogCpTransformer(), ArcsinTransformer(), PowerTransformer(), ReciprocalTransformer(), YeoJohnsonTransformer(), ] @pytest.mark.parametrize("estimator", _estimators) def test_check_estimator_from_sklearn(estimator): return check_estimator(estimator) @pytest.mark.parametrize("estimator", _estimators[4:]) def test_check_estimator_from_feature_engine(estimator): return check_feature_engine_estimator(estimator)