def make_feature_factory_manager(split_num, model_id=None): logger = get_logger() feature_factory_dict = {} for column in ["user_id", "content_id", ("leced", "prior_question_had_explanation")]: is_partial_fit = (column == "content_id" or column == "user_id") if type(column) == str: feature_factory_dict[column] = { "TargetEncoder": TargetEncoder(column=column, is_partial_fit=is_partial_fit) } else: feature_factory_dict[column] = { "TargetEncoder": TargetEncoder(column=list(column), is_partial_fit=is_partial_fit) } feature_factory_dict["user_id"]["ShiftDiffEncoderTimestamp"] = ShiftDiffEncoder(groupby="user_id", column="timestamp", is_partial_fit=True) feature_factory_dict["user_id"]["PastNTimestampEncoder"] = PastNFeatureEncoder(column="timestamp", past_ns=[5, 20], agg_funcs=["vslast"], remove_now=False) feature_factory_dict["user_id"]["Past1ContentTypeId"] = PastNFeatureEncoder(column="content_type_id", past_ns=[5, 15], agg_funcs=["mean"], remove_now=False) feature_factory_dict["user_id"]["StudyTermEncoder"] = StudyTermEncoder(is_partial_fit=True) feature_factory_dict["user_id"]["ElapsedTimeVsShiftDiffEncoder"] = ElapsedTimeVsShiftDiffEncoder() feature_factory_dict["user_id"]["CountEncoder"] = CountEncoder(column="user_id", is_partial_fit=True) feature_factory_dict["user_id"]["UserAnswerLevelEncoder"] = UserAnswerLevelEncoder(past_n=50) feature_factory_dict[("user_id", "part")] = { "UserContentRateEncoder": UserContentRateEncoder(column=["user_id", "part"], rate_func="elo") } for column in ["user_id", "content_id", "part", ("user_id", "part")]: if column not in feature_factory_dict: feature_factory_dict[column] = {} if type(column) == str: feature_factory_dict[column][f"MeanAggregatorShiftDiffTimeElapsedTimeby{column}"] = MeanAggregator(column=column, agg_column="shiftdiff_timestamp_by_user_id_cap200k", remove_now=False) feature_factory_dict[column][f"MeanAggregatorStudyTimeby{column}"] = MeanAggregator(column=column, agg_column="study_time", remove_now=False) else: feature_factory_dict[column][f"MeanAggregatorShiftDiffTimeElapsedTimeby{column}"] = MeanAggregator(column=list(column), agg_column="shiftdiff_timestamp_by_user_id_cap200k", remove_now=False) feature_factory_dict[column][f"MeanAggregatorStudyTimeby{column}"] = MeanAggregator(column=list(column), agg_column="study_time", remove_now=False) feature_factory_dict["user_id"]["CategoryLevelEncoderPart"] = CategoryLevelEncoder(groupby_column="user_id", agg_column="part", categories=[2, 5]) feature_factory_dict["user_id"]["PreviousAnswer2"] = PreviousAnswer2(groupby="user_id", column="content_id", is_debug=is_debug, model_id=model_id, n=300) feature_factory_dict["user_id"]["PreviousNAnsweredCorrectly"] = PreviousNAnsweredCorrectly(n=5, is_partial_fit=True) feature_factory_dict[f"previous_5_ans"] = { "TargetEncoder": TargetEncoder(column="previous_5_ans") } feature_factory_dict["user_id"]["QuestionLectureTableEncoder2"] = QuestionLectureTableEncoder2(model_id=model_id, is_debug=is_debug, past_n=100, min_size=300) feature_factory_dict["user_id"]["QuestionQuestionTableEncoder2"] = QuestionQuestionTableEncoder2(model_id=model_id, is_debug=is_debug, past_n=100, min_size=300) feature_factory_dict["user_id"]["UserContentRateEncoder"] = UserContentRateEncoder(column="user_id", rate_func="elo") feature_factory_dict["user_id"]["PreviousContentAnswerTargetEncoder"] = PreviousContentAnswerTargetEncoder(min_size=300) feature_factory_dict["post"] = { "ContentIdTargetEncoderAggregator": TargetEncoderAggregator() } feature_factory_manager = FeatureFactoryManager(feature_factory_dict=feature_factory_dict, logger=logger, split_num=split_num, model_id=model_id, load_feature=not is_debug, save_feature=not is_debug) return feature_factory_manager
def make_feature_factory_manager(split_num, model_id=None): logger = get_logger() feature_factory_dict = {} feature_factory_dict["tags"] = { "TagsSeparator": TagsSeparator(is_partial_fit=True) } for column in ["user_id", "content_id"]: is_partial_fit = (column == "content_id" or column == "user_id") if type(column) == str: feature_factory_dict[column] = { "TargetEncoder": TargetEncoder(column=column, is_partial_fit=is_partial_fit) } else: feature_factory_dict[column] = { "TargetEncoder": TargetEncoder(column=list(column), is_partial_fit=is_partial_fit) } feature_factory_dict["user_id"][ "ShiftDiffEncoderTimestamp"] = ShiftDiffEncoder(groupby="user_id", column="timestamp") for column in ["user_id", "content_id"]: feature_factory_dict[column][ f"MeanAggregatorPriorQuestionElapsedTimeby{column}"] = MeanAggregator( column=column, agg_column="prior_question_elapsed_time", remove_now=True) feature_factory_dict["content_id"][ "ContentLevelEncoder2UserId"] = ContentLevelEncoder( vs_column="user_id", is_partial_fit=True) feature_factory_dict["user_id"][ "MeanAggregatorContentLevel"] = MeanAggregator( column="user_id", agg_column="content_level_user_id", remove_now=False) feature_factory_dict["user_id"]["CountEncoder"] = CountEncoder( column="user_id", is_partial_fit=True) feature_factory_dict["user_id"][ "UserCountBinningEncoder"] = UserCountBinningEncoder( is_partial_fit=True) feature_factory_dict["user_count_bin"] = {} feature_factory_dict["user_count_bin"]["TargetEncoder"] = TargetEncoder( column="user_count_bin") feature_factory_dict[("user_id", "user_count_bin")] = { "TargetEncoder": TargetEncoder(column=["user_id", "user_count_bin"]) } feature_factory_dict[("content_id", "user_count_bin")] = { "TargetEncoder": TargetEncoder(column=["content_id", "user_count_bin"]) } feature_factory_dict["user_id"][ "CategoryLevelEncoderPart"] = CategoryLevelEncoder( groupby_column="user_id", agg_column="part", categories=[2, 5]) feature_factory_dict["prior_question_elapsed_time"] = { "PriorQuestionElapsedTimeBinningEncoder": PriorQuestionElapsedTimeBinningEncoder(is_partial_fit=True) } feature_factory_dict[("part", "prior_question_elapsed_time_bin")] = { "TargetEncoder": TargetEncoder(column=["part", "prior_question_elapsed_time_bin"]) } feature_factory_dict["user_id"]["PreviousAnswer2"] = PreviousAnswer2( groupby="user_id", column="content_id", is_debug=is_debug, model_id=model_id, n=1000) feature_factory_dict["user_id"][ "PreviousNAnsweredCorrectly"] = PreviousNAnsweredCorrectly( n=3, is_partial_fit=True) feature_factory_dict[f"previous_3_ans"] = { "TargetEncoder": TargetEncoder(column="previous_3_ans") } feature_factory_dict["user_id"][ "QuestionLectureTableEncoder2"] = QuestionLectureTableEncoder2( model_id=model_id, is_debug=is_debug, past_n=100) feature_factory_dict["user_id"][ "QuestionQuestionTableEncoder"] = QuestionQuestionTableEncoder( model_id=model_id, is_debug=is_debug, past_n=100) feature_factory_dict["user_id"][ "UserAnswerLevelEncoder"] = UserAnswerLevelEncoder(model_id=model_id, is_debug=is_debug, past_n=100) feature_factory_dict["user_id"][ "UserContentRateEncoder"] = UserContentRateEncoder(column="user_id", rate_func="elo", initial_rate=1500) feature_factory_dict[("user_id", "part")] = { "UserContentRateEncoder": UserContentRateEncoder(column=["user_id", "part"], rate_func="elo", initial_rate=1500) } feature_factory_dict["post"] = { "ContentIdTargetEncoderAggregator": TargetEncoderAggregator() } feature_factory_manager = FeatureFactoryManager( feature_factory_dict=feature_factory_dict, logger=logger, split_num=split_num, model_id=model_id, load_feature=not is_debug, save_feature=not is_debug) return feature_factory_manager