コード例 #1
0
ファイル: ex_202.py プロジェクト: kurupical/riiid
def make_feature_factory_manager(split_num, model_id=None):
    logger = get_logger()

    feature_factory_dict = {}

    for column in ["user_id", "content_id", ("leced", "prior_question_had_explanation")]:
        is_partial_fit = (column == "content_id" or column == "user_id")

        if type(column) == str:
            feature_factory_dict[column] = {
                "TargetEncoder": TargetEncoder(column=column, is_partial_fit=is_partial_fit)
            }
        else:
            feature_factory_dict[column] = {
                "TargetEncoder": TargetEncoder(column=list(column), is_partial_fit=is_partial_fit)
            }
    feature_factory_dict["user_id"]["ShiftDiffEncoderTimestamp"] = ShiftDiffEncoder(groupby="user_id",
                                                                                    column="timestamp",
                                                                                    is_partial_fit=True)
    feature_factory_dict["user_id"]["PastNTimestampEncoder"] = PastNFeatureEncoder(column="timestamp",
                                                                                   past_ns=[5, 20],
                                                                                   agg_funcs=["vslast"],
                                                                                   remove_now=False)
    feature_factory_dict["user_id"]["Past1ContentTypeId"] = PastNFeatureEncoder(column="content_type_id",
                                                                                past_ns=[5, 15],
                                                                                agg_funcs=["mean"],
                                                                                remove_now=False)
    feature_factory_dict["user_id"]["StudyTermEncoder"] = StudyTermEncoder(is_partial_fit=True)
    feature_factory_dict["user_id"]["ElapsedTimeVsShiftDiffEncoder"] = ElapsedTimeVsShiftDiffEncoder()
    feature_factory_dict["user_id"]["CountEncoder"] = CountEncoder(column="user_id", is_partial_fit=True)
    feature_factory_dict["user_id"]["UserAnswerLevelEncoder"] = UserAnswerLevelEncoder(past_n=50)
    feature_factory_dict[("user_id", "part")] = {
        "UserContentRateEncoder": UserContentRateEncoder(column=["user_id", "part"],
                                                         rate_func="elo")
    }

    for column in ["user_id", "content_id", "part", ("user_id", "part")]:
        if column not in feature_factory_dict:
            feature_factory_dict[column] = {}
        if type(column) == str:
            feature_factory_dict[column][f"MeanAggregatorShiftDiffTimeElapsedTimeby{column}"] = MeanAggregator(column=column,
                                                                                                               agg_column="shiftdiff_timestamp_by_user_id_cap200k",
                                                                                                               remove_now=False)
            feature_factory_dict[column][f"MeanAggregatorStudyTimeby{column}"] = MeanAggregator(column=column,
                                                                                                agg_column="study_time",
                                                                                                remove_now=False)
        else:
            feature_factory_dict[column][f"MeanAggregatorShiftDiffTimeElapsedTimeby{column}"] = MeanAggregator(column=list(column),
                                                                                                               agg_column="shiftdiff_timestamp_by_user_id_cap200k",
                                                                                                               remove_now=False)
            feature_factory_dict[column][f"MeanAggregatorStudyTimeby{column}"] = MeanAggregator(column=list(column),
                                                                                                agg_column="study_time",
                                                                                                remove_now=False)


    feature_factory_dict["user_id"]["CategoryLevelEncoderPart"] = CategoryLevelEncoder(groupby_column="user_id",
                                                                                       agg_column="part",
                                                                                       categories=[2, 5])

    feature_factory_dict["user_id"]["PreviousAnswer2"] = PreviousAnswer2(groupby="user_id",
                                                                         column="content_id",
                                                                         is_debug=is_debug,
                                                                         model_id=model_id,
                                                                         n=300)
    feature_factory_dict["user_id"]["PreviousNAnsweredCorrectly"] = PreviousNAnsweredCorrectly(n=5,
                                                                                               is_partial_fit=True)

    feature_factory_dict[f"previous_5_ans"] = {
        "TargetEncoder": TargetEncoder(column="previous_5_ans")
    }
    feature_factory_dict["user_id"]["QuestionLectureTableEncoder2"] = QuestionLectureTableEncoder2(model_id=model_id,
                                                                                                   is_debug=is_debug,
                                                                                                   past_n=100,
                                                                                                   min_size=300)
    feature_factory_dict["user_id"]["QuestionQuestionTableEncoder2"] = QuestionQuestionTableEncoder2(model_id=model_id,
                                                                                                     is_debug=is_debug,
                                                                                                     past_n=100,
                                                                                                     min_size=300)
    feature_factory_dict["user_id"]["UserContentRateEncoder"] = UserContentRateEncoder(column="user_id",
                                                                                       rate_func="elo")
    feature_factory_dict["user_id"]["PreviousContentAnswerTargetEncoder"] = PreviousContentAnswerTargetEncoder(min_size=300)
    feature_factory_dict["post"] = {
        "ContentIdTargetEncoderAggregator": TargetEncoderAggregator()
    }


    feature_factory_manager = FeatureFactoryManager(feature_factory_dict=feature_factory_dict,
                                                    logger=logger,
                                                    split_num=split_num,
                                                    model_id=model_id,
                                                    load_feature=not is_debug,
                                                    save_feature=not is_debug)
    return feature_factory_manager
コード例 #2
0
ファイル: ex_110.py プロジェクト: kurupical/riiid
def make_feature_factory_manager(split_num, model_id=None):
    logger = get_logger()

    feature_factory_dict = {}
    feature_factory_dict["tags"] = {
        "TagsSeparator": TagsSeparator(is_partial_fit=True)
    }

    for column in ["user_id", "content_id"]:
        is_partial_fit = (column == "content_id" or column == "user_id")

        if type(column) == str:
            feature_factory_dict[column] = {
                "TargetEncoder":
                TargetEncoder(column=column, is_partial_fit=is_partial_fit)
            }
        else:
            feature_factory_dict[column] = {
                "TargetEncoder":
                TargetEncoder(column=list(column),
                              is_partial_fit=is_partial_fit)
            }
    feature_factory_dict["user_id"][
        "ShiftDiffEncoderTimestamp"] = ShiftDiffEncoder(groupby="user_id",
                                                        column="timestamp")
    for column in ["user_id", "content_id"]:
        feature_factory_dict[column][
            f"MeanAggregatorPriorQuestionElapsedTimeby{column}"] = MeanAggregator(
                column=column,
                agg_column="prior_question_elapsed_time",
                remove_now=True)

    feature_factory_dict["content_id"][
        "ContentLevelEncoder2UserId"] = ContentLevelEncoder(
            vs_column="user_id", is_partial_fit=True)
    feature_factory_dict["user_id"][
        "MeanAggregatorContentLevel"] = MeanAggregator(
            column="user_id",
            agg_column="content_level_user_id",
            remove_now=False)
    feature_factory_dict["user_id"]["CountEncoder"] = CountEncoder(
        column="user_id", is_partial_fit=True)
    feature_factory_dict["user_id"][
        "UserCountBinningEncoder"] = UserCountBinningEncoder(
            is_partial_fit=True)
    feature_factory_dict["user_count_bin"] = {}
    feature_factory_dict["user_count_bin"]["TargetEncoder"] = TargetEncoder(
        column="user_count_bin")
    feature_factory_dict[("user_id", "user_count_bin")] = {
        "TargetEncoder": TargetEncoder(column=["user_id", "user_count_bin"])
    }
    feature_factory_dict[("content_id", "user_count_bin")] = {
        "TargetEncoder": TargetEncoder(column=["content_id", "user_count_bin"])
    }

    feature_factory_dict["user_id"][
        "CategoryLevelEncoderPart"] = CategoryLevelEncoder(
            groupby_column="user_id", agg_column="part", categories=[2, 5])
    feature_factory_dict["prior_question_elapsed_time"] = {
        "PriorQuestionElapsedTimeBinningEncoder":
        PriorQuestionElapsedTimeBinningEncoder(is_partial_fit=True)
    }
    feature_factory_dict[("part", "prior_question_elapsed_time_bin")] = {
        "TargetEncoder":
        TargetEncoder(column=["part", "prior_question_elapsed_time_bin"])
    }
    feature_factory_dict["user_id"]["PreviousAnswer2"] = PreviousAnswer2(
        groupby="user_id",
        column="content_id",
        is_debug=is_debug,
        model_id=model_id,
        n=1000)
    feature_factory_dict["user_id"][
        "PreviousNAnsweredCorrectly"] = PreviousNAnsweredCorrectly(
            n=3, is_partial_fit=True)

    feature_factory_dict[f"previous_3_ans"] = {
        "TargetEncoder": TargetEncoder(column="previous_3_ans")
    }
    feature_factory_dict["user_id"][
        "QuestionLectureTableEncoder2"] = QuestionLectureTableEncoder2(
            model_id=model_id, is_debug=is_debug, past_n=100)
    feature_factory_dict["user_id"][
        "QuestionQuestionTableEncoder"] = QuestionQuestionTableEncoder(
            model_id=model_id, is_debug=is_debug, past_n=100)
    feature_factory_dict["user_id"][
        "UserAnswerLevelEncoder"] = UserAnswerLevelEncoder(model_id=model_id,
                                                           is_debug=is_debug,
                                                           past_n=100)
    feature_factory_dict["user_id"][
        "UserContentRateEncoder"] = UserContentRateEncoder(column="user_id",
                                                           rate_func="elo",
                                                           initial_rate=1500)
    feature_factory_dict[("user_id", "part")] = {
        "UserContentRateEncoder":
        UserContentRateEncoder(column=["user_id", "part"],
                               rate_func="elo",
                               initial_rate=1500)
    }
    feature_factory_dict["post"] = {
        "ContentIdTargetEncoderAggregator": TargetEncoderAggregator()
    }

    feature_factory_manager = FeatureFactoryManager(
        feature_factory_dict=feature_factory_dict,
        logger=logger,
        split_num=split_num,
        model_id=model_id,
        load_feature=not is_debug,
        save_feature=not is_debug)
    return feature_factory_manager