コード例 #1
0
def ner_tag(sent):
    #----- REPLACE THESE PATHS FOR YOUR SYSTEM ---------------------
    json_file = r"C:/Users/admin/Documents/Studies/7th Sem/Natural Language Processing/SeeEvaluation/SEE/SEE/QueryGenerator/NER/all_data.json"
    #pickle_file = r"C:\home\ananth\research\pesit\nlp\ner\all_data.p"
    pickle_file = r"C:/Users/admin/Documents/Studies/7th Sem/Natural Language Processing/SeeEvaluation/SEE/SEE/QueryGenerator/NER/all_data.p"
    history_file = r"C:/Users/admin/Documents/Studies/7th Sem/Natural Language Processing/SeeEvaluation/SEE/SEE/QueryGenerat1or/NER/history.p"
    model_metrics_file = r"C:/Users/admin/Documents/Studies/7th Sem/Natural Language Processing/SeeEvaluation/SEE/SEE/QueryGenerator/NER/model_metrics.p"
    # ----------------------------------------------------------------
    ner_client = NerClient("1PI11CS196", "g04")    
    ret = ner_client.get_brand_product_bigrams_dict()
    
    supported_tags = ["Org", "OS", "Version", "Phone", "Other", "Price", "Family", "Size", "Feature"]    
    
    data = json.loads(open(json_file).read())['root']
    #print "num stu = ", len(data)
    (history_list, sents, expected) = build_history(data, supported_tags)
    (his1, wmap1) = build_history_1(data, supported_tags)
    myhis = (history_list, sents, expected, ) 
    
    func_obj = FeatureFunctions(wmap1, supported_tags, ret) #FeatureFunctions(supported_tags)
    #print "Number of features defined: ", len(func_obj.flist)
    clf = Memm(func_obj, pickle_file)

    func_obj.set_wmap(sents)
    #print "After build_history"
        

    #TRAIN = int(raw_input("Enter 1 for Train, 0 to use pickeled file:  "))
    TRAIN = 0
    if TRAIN == 1:
        clf.train(history_list[:7500], reg_lambda = 0.02) # 10000
    else:
        clf.load_classifier()

    #print "Model: ", clf.model, " tagset = ", clf.tag_set

    test_sents = []
    test_sents.append(sent.split(" "))
    result = clf.tag(test_sents)
    return result
コード例 #2
0
def main(sent):

    pickle_file = r"/Users/vaishnavibharadwaj/Documents/7th sem/nlp/exam/day3/raks/all_data.p"  #r"C:\home\ananth\research\pesit\nlp\client\all_data.p"
    history_file = r"/Users/vaishnavibharadwaj/Documents/7th sem/nlp/exam/day3/raks/history.p"  #r"C:\home\ananth\research\pesit\nlp\client\history.p"

    ner_client = NerClient("1PI11CS026", "g07")
    ret = ner_client.get_brand_product_bigrams_dict()

    supported_tags = [
        "Org", "OS", "Version", "Phone", "Other", "Price", "Family", "Size",
        "Feature"
    ]

    # func_obj = FeatureFunctions(wmap1, supported_tags, ret) #FeatureFunctions(supported_tags)
    # print "Number of features defined: ", len(func_obj.flist)
    # clf = Memm(func_obj, pickle_file)

    # func_obj.set_wmap(sents)
    # print "After build_history"

    #print 'getting data from file'
    (history_list, sents, expected) = pickle.load(open(history_file, "rb"))
    wmap1 = []
    func_obj = FeatureFunctions(wmap1, supported_tags,
                                ret)  #FeatureFunctions(supported_tags)
    # print "Number of features defined: ", len(func_obj.flist)
    clf = Memm(func_obj, pickle_file)

    # func_obj.set_wmap(sents)
    # print "After build_history"

    # TRAIN = int(raw_input("Enter 1 for Train, 0 to use pickeled file:  "))
    # if TRAIN == 1:
    #     clf.train(history_list[:7500], reg_lambda = 0.02) # 10000
    # else:
    clf.load_classifier()
    test_sents = []
    test_sents.append(sent)
    #print (type(test_sents))
    #print(test_sents)

    result = clf.tag(test_sents)
    return result[0]
コード例 #3
0
    data = json.loads(open(json_file).read())['root']
    print "num stu = ", len(data)
    (history_list, sents, expected) = build_history(data, supported_tags)
    (his1, wmap1) = build_history_1(data, supported_tags)
    myhis = (history_list, sents, expected, )
    pickle.dump(myhis, open(history_file, "wb"))
    #print history_list[:100]
    #raw_input("Enter to continue")
    '''
    else:
        print 'getting data from file'
        (history_list, sents, expected) = pickle.load(open(history_file, "rb"))
        print 'got history data from file'
    '''

    func_obj = FeatureFunctions(wmap1, supported_tags, ret) #FeatureFunctions(supported_tags)
    print "Number of features defined: ", len(func_obj.flist)
    clf = Memm(func_obj, pickle_file)

    func_obj.set_wmap(sents)
    print "After build_history"


    TRAIN = int(raw_input("Enter 1 for Train, 0 to use pickeled file:  "))
    if TRAIN == 1:
        clf.train(history_list[:7500], reg_lambda = 0.02) # 10000
    else:
        clf.load_classifier()

    print "Model: ", clf.model, " tagset = ", clf.tag_set
コード例 #4
0
ファイル: ner_main (2).py プロジェクト: rashrag/nlp-eval-day2
    data = json.loads(open(json_file).read())['root']
    print "num stu = ", len(data)
    (history_list, sents, expected) = build_history(data, supported_tags)
    (his1, wmap1) = build_history_1(data, supported_tags)
    myhis = (history_list, sents, expected, ) 
    pickle.dump(myhis, open(history_file, "wb"))        
    #print history_list[:100]
    #raw_input("Enter to continue")
    '''
    else:
        print 'getting data from file'
        (history_list, sents, expected) = pickle.load(open(history_file, "rb"))        
        print 'got history data from file'
    '''

    func_obj = FeatureFunctions(wmap1, supported_tags, ret) #FeatureFunctions(supported_tags)
    print "Number of features defined: ", len(func_obj.flist)
    clf = Memm(func_obj, pickle_file)

    func_obj.set_wmap(sents)
    print "After build_history"
        

    TRAIN = int(raw_input("Enter 1 for Train, 0 to use pickeled file:  "))
    if TRAIN == 1:
        clf.train(history_list[:7500], reg_lambda = 0.02) # 10000
    else:
        clf.load_classifier()

    print "Model: ", clf.model, " tagset = ", clf.tag_set