def test_c(flag, sql_flag): sql_dir = "./data/sql_test.csv" nor_dir = "./data/normal_test.csv" allm_dir = "./data/alltest_matrix.csv" if flag == '1' and sql_flag == '0': nor_matrix = generate(nor_dir, "./data/nor_matrix.csv", 0) return nor_matrix elif flag == '1' and sql_flag == '1': sql_matrix = generate(sql_dir, "./data/sqltest_matrix.csv", 1) return sql_matrix else: sql_matrix = generate(sql_dir, "./data/sqltest_matrix.csv", 1) nor_matrix = generate(nor_dir, "./data/nortest_matrix.csv", 0) df = pd.read_csv(sql_matrix) df.to_csv(allm_dir, encoding="utf_8_sig", index=False) df = pd.read_csv(nor_matrix) df.to_csv(allm_dir, encoding="utf_8_sig", index=False, header=False, mode='a+') return allm_dir
# -*- coding: utf-8 -*- """ Created on Mon Nov 20 19:06:57 2017 @author: wf """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import metrics from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from featurepossess import generate from sklearn.externals import joblib sql_matrix = generate("./data/sqlnew.csv", "./data/sql_matrix.csv", 1) nor_matrix = generate("./data/normal_less.csv", "./data/nor_matrix.csv", 0) df = pd.read_csv(sql_matrix) df.to_csv("./data/all_matrix.csv", encoding="utf_8_sig", index=False) df = pd.read_csv(nor_matrix) df.to_csv("./data/all_matrix.csv", encoding="utf_8_sig", index=False, header=False, mode='a+') feature_max = pd.read_csv('./data/all_matrix.csv') arr = feature_max.values data = np.delete(arr, -1, axis=1) #删除最后一列 #print(arr)