def classifyImageSuperPixels( rgbImage, classifier, superPixelObj, ftype, aggtype, makeProbabilities ): outProbs = None # Get superpixels imgSuperPixelsMask = superPixelObj.m_labels imgSuperPixels = superPixelObj.m_nodes numberImgSuperPixels = len(imgSuperPixels) print "**Image contains", numberImgSuperPixels, "superpixels" # Get superpixel features # todo: replace with features.computeSuperPixelFeatures JRS spFtrs = features.computeSuperPixelFeatures( rgbImage, superPixelObj, ftype, aggtype ) spLabels = classLabelsOfFeatures( spFtrs, classifier ) if makeProbabilities: outProbs = classProbsOfFeatures( spFtrs, classifier ) return (spLabels, outProbs)
superPixelCompactness = args.superPixelCompactness imgRGB = amntools.readImage(args.infile) # Turn image into superpixels. spix = superPixels.computeSuperPixelGraph( imgRGB, 'slic', [numberSuperPixels, superPixelCompactness]) print 'Loading classifier...' assert args.clfrFn != None, 'No classifier filename specified!' clfr = pomio.unpickleObject(args.clfrFn) print 'Computing superpixel features...' ftrs = features.computeSuperPixelFeatures(imgRGB, spix, ftype='classic', aggtype='classic') print 'Computing class probabilities...' classProbs = classification.classProbsOfFeatures(ftrs,clfr,\ requireAllClasses=False) if args.verbose: plt.interactive(1) if adjProbs != None: plt.figure() plt.imshow(np.log(1 + adjProbs), cmap=cm.get_cmap('gray'), interpolation='none') plt.title('Adjacency probabilities')
numberSuperPixels = args.nbSuperPixels superPixelCompactness = args.superPixelCompactness imgRGB = amntools.readImage( args.infile ) # Turn image into superpixels. spix = superPixels.computeSuperPixelGraph( imgRGB, 'slic', [numberSuperPixels,superPixelCompactness] ) print 'Loading classifier...' assert args.clfrFn != None, 'No classifier filename specified!' clfr = pomio.unpickleObject(args.clfrFn) print 'Computing superpixel features...' ftrs = features.computeSuperPixelFeatures( imgRGB, spix, ftype='classic', aggtype='classic' ) print 'Computing class probabilities...' classProbs = classification.classProbsOfFeatures(ftrs,clfr,\ requireAllClasses=False) if args.verbose: plt.interactive(1) if adjProbs != None: plt.figure() plt.imshow(np.log(1+adjProbs), cmap=cm.get_cmap('gray'), interpolation='none') plt.title('Adjacency probabilities') plt.waitforbuttonpress()