コード例 #1
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        df_pos = PosCash.get_df(conf)

        # Replace some outliers
        df_pos.loc[df_pos['CNT_INSTALMENT_FUTURE'] > 60,
                   'CNT_INSTALMENT_FUTURE'] = np.nan

        # Some new features
        df_pos['pos CNT_INSTALMENT more CNT_INSTALMENT_FUTURE'] = \
            (df_pos['CNT_INSTALMENT'] > df_pos['CNT_INSTALMENT_FUTURE']).astype(int)

        # Categorical features with One-Hot encode
        df_pos, categorical = one_hot_encoder(df_pos)

        # Aggregations for application set
        aggregations = {}
        for col in df_pos.columns:
            aggregations[col] = ['mean'] if col in categorical else [
                'min', 'max', 'size', 'mean', 'var', 'sum'
            ]
        df_pos_agg = df_pos.groupby('SK_ID_CURR').agg(aggregations)
        df_pos_agg.columns = pd.Index([
            'POS_' + e[0] + "_" + e[1].upper()
            for e in df_pos_agg.columns.tolist()
        ])

        # Count POS lines
        df_pos_agg['POS_COUNT'] = df_pos.groupby('SK_ID_CURR').size()
        del df_pos
        gc.collect()

        return df_pos_agg
コード例 #2
0
 def _create_feature(cls, conf) -> pd.DataFrame:
     ins = InstallmentsPayments.get_df(conf)
     ins, cat_cols = one_hot_encoder(ins, nan_as_category=True)
     # Percentage and difference paid in each installment (amount paid and installment value)
     ins['PAYMENT_PERC'] = ins['AMT_PAYMENT'] / ins['AMT_INSTALMENT']
     ins['PAYMENT_DIFF'] = ins['AMT_INSTALMENT'] - ins['AMT_PAYMENT']
     # Days past due and days before due (no negative values)
     ins['DPD'] = ins['DAYS_ENTRY_PAYMENT'] - ins['DAYS_INSTALMENT']
     ins['DBD'] = ins['DAYS_INSTALMENT'] - ins['DAYS_ENTRY_PAYMENT']
     ins['DPD'] = ins['DPD'].apply(lambda x: x if x > 0 else 0)
     ins['DBD'] = ins['DBD'].apply(lambda x: x if x > 0 else 0)
     # Features: Perform aggregations
     aggregations = {
         'NUM_INSTALMENT_VERSION': ['nunique'],
         'DPD': ['max', 'mean', 'sum'],
         'DBD': ['max', 'mean', 'sum'],
         'PAYMENT_PERC': ['mean', 'var'],
         'PAYMENT_DIFF': ['mean', 'var'],
         'AMT_INSTALMENT': ['max', 'mean', 'sum'],
         'AMT_PAYMENT': ['min', 'max', 'mean', 'sum'],
         'DAYS_ENTRY_PAYMENT': ['max', 'mean', 'sum']
     }
     for cat in cat_cols:
         aggregations[cat] = ['mean']
     ins_agg = ins.groupby('SK_ID_CURR').agg(aggregations)
     ins_agg.columns = pd.Index([
         'INSTAL_' + e[0] + "_" + e[1].upper()
         for e in ins_agg.columns.tolist()
     ])
     # Count installments accounts
     ins_agg['INSTAL_COUNT'] = ins.groupby('SK_ID_CURR').size()
     del ins
     gc.collect()
     return ins_agg
コード例 #3
0
 def _create_feature(cls, conf) -> pd.DataFrame:
     cc = CreditCardBalance.get_df(conf)
     cc, cat_cols = one_hot_encoder(cc, nan_as_category=True)
     # General aggregations
     cc.drop(['SK_ID_PREV'], axis=1, inplace=True)
     cc_agg = cc.groupby('SK_ID_CURR').agg(['max', 'mean', 'sum', 'var'])
     cc_agg.columns = pd.Index(['CC_' + e[0] + "_" + e[1].upper() for e in cc_agg.columns.tolist()])
     # Count credit card lines
     cc_agg['CC_COUNT'] = cc.groupby('SK_ID_CURR').size()
     del cc
     gc.collect()
     return cc_agg
コード例 #4
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        prev = PreviousApplication.get_df(conf)
        prev, cat_cols = one_hot_encoder(prev, nan_as_category=True)
        # Add feature: value ask / value received percentage
        prev['APP_CREDIT_PERC'] = prev['AMT_APPLICATION'] / prev['AMT_CREDIT']
        # Previous applications numeric features
        num_aggregations = {
            'AMT_ANNUITY': ['max', 'mean'],
            'AMT_APPLICATION': ['max', 'mean'],
            'AMT_CREDIT': ['max', 'mean'],
            'APP_CREDIT_PERC': ['max', 'mean'],
            'AMT_DOWN_PAYMENT': ['max', 'mean'],
            'AMT_GOODS_PRICE': ['max', 'mean'],
            'HOUR_APPR_PROCESS_START': ['max', 'mean'],
            'RATE_DOWN_PAYMENT': ['max', 'mean'],
            'DAYS_DECISION': ['max', 'mean'],
            'CNT_PAYMENT': ['mean', 'sum'],
        }
        # Previous applications categorical features
        cat_aggregations = {}
        for cat in cat_cols:
            cat_aggregations[cat] = ['mean']

        prev_agg = prev.groupby('SK_ID_CURR').agg({
            **num_aggregations,
            **cat_aggregations
        })
        prev_agg.columns = pd.Index([
            'PREV_' + e[0] + "_" + e[1].upper()
            for e in prev_agg.columns.tolist()
        ])
        # Previous Applications: Approved Applications - only numerical features
        approved = prev[prev['NAME_CONTRACT_STATUS_Approved'] == 1]
        approved_agg = approved.groupby('SK_ID_CURR').agg(num_aggregations)
        approved_agg.columns = pd.Index([
            'APPROVED_' + e[0] + "_" + e[1].upper()
            for e in approved_agg.columns.tolist()
        ])
        prev_agg = prev_agg.join(approved_agg, how='left', on='SK_ID_CURR')
        # Previous Applications: Refused Applications - only numerical features
        refused = prev[prev['NAME_CONTRACT_STATUS_Refused'] == 1]
        refused_agg = refused.groupby('SK_ID_CURR').agg(num_aggregations)
        refused_agg.columns = pd.Index([
            'REFUSED_' + e[0] + "_" + e[1].upper()
            for e in refused_agg.columns.tolist()
        ])
        prev_agg = prev_agg.join(refused_agg, how='left', on='SK_ID_CURR')
        del refused, refused_agg, approved, approved_agg, prev
        gc.collect()
        return prev_agg
コード例 #5
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        df_ins = InstallmentsPayments.get_df(conf)

        # Replace some outliers
        df_ins.loc[df_ins['NUM_INSTALMENT_VERSION'] > 70,
                   'NUM_INSTALMENT_VERSION'] = np.nan
        df_ins.loc[df_ins['DAYS_ENTRY_PAYMENT'] < -4000,
                   'DAYS_ENTRY_PAYMENT'] = np.nan

        # Some new features
        df_ins['ins DAYS_ENTRY_PAYMENT - DAYS_INSTALMENT'] = df_ins[
            'DAYS_ENTRY_PAYMENT'] - df_ins['DAYS_INSTALMENT']
        df_ins['ins NUM_INSTALMENT_NUMBER_100'] = (
            df_ins['NUM_INSTALMENT_NUMBER'] == 100).astype(int)
        df_ins['ins DAYS_INSTALMENT more NUM_INSTALMENT_NUMBER'] = (
            df_ins['DAYS_INSTALMENT'] >
            df_ins['NUM_INSTALMENT_NUMBER'] * 50 / 3 - 11500 / 3).astype(int)
        df_ins['ins AMT_INSTALMENT - AMT_PAYMENT'] = df_ins[
            'AMT_INSTALMENT'] - df_ins['AMT_PAYMENT']
        df_ins['ins AMT_PAYMENT / AMT_INSTALMENT'] = df_ins[
            'AMT_PAYMENT'] / df_ins['AMT_INSTALMENT']

        # Categorical features with One-Hot encode
        df_ins, categorical = one_hot_encoder(df_ins)

        # Aggregations for application set
        aggregations = {}
        for col in df_ins.columns:
            aggregations[col] = ['mean'] if col in categorical else [
                'min', 'max', 'size', 'mean', 'var', 'sum'
            ]
        df_ins_agg = df_ins.groupby('SK_ID_CURR').agg(aggregations)
        df_ins_agg.columns = pd.Index([
            'INS_' + e[0] + "_" + e[1].upper()
            for e in df_ins_agg.columns.tolist()
        ])

        # Count installments lines
        df_ins_agg['INSTAL_COUNT'] = df_ins.groupby('SK_ID_CURR').size()
        del df_ins
        gc.collect()

        return df_ins_agg
コード例 #6
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        df_card = CreditCardBalance.get_df(conf)

        # Replace some outliers
        df_card.loc[df_card['AMT_PAYMENT_CURRENT'] > 4000000, 'AMT_PAYMENT_CURRENT'] = np.nan
        df_card.loc[df_card['AMT_CREDIT_LIMIT_ACTUAL'] > 1000000, 'AMT_CREDIT_LIMIT_ACTUAL'] = np.nan

        # Some new features
        df_card['card missing'] = df_card.isnull().sum(axis = 1).values
        df_card['card SK_DPD - MONTHS_BALANCE'] = df_card['SK_DPD'] - df_card['MONTHS_BALANCE']
        df_card['card SK_DPD_DEF - MONTHS_BALANCE'] = df_card['SK_DPD_DEF'] - df_card['MONTHS_BALANCE']
        df_card['card SK_DPD - SK_DPD_DEF'] = df_card['SK_DPD'] - df_card['SK_DPD_DEF']

        df_card['card AMT_TOTAL_RECEIVABLE - AMT_RECIVABLE'] = df_card['AMT_TOTAL_RECEIVABLE'] - df_card['AMT_RECIVABLE']
        df_card['card AMT_TOTAL_RECEIVABLE - AMT_RECEIVABLE_PRINCIPAL'] = df_card['AMT_TOTAL_RECEIVABLE'] - df_card['AMT_RECEIVABLE_PRINCIPAL']
        df_card['card AMT_RECIVABLE - AMT_RECEIVABLE_PRINCIPAL'] = df_card['AMT_RECIVABLE'] - df_card['AMT_RECEIVABLE_PRINCIPAL']

        df_card['card AMT_BALANCE - AMT_RECIVABLE'] = df_card['AMT_BALANCE'] - df_card['AMT_RECIVABLE']
        df_card['card AMT_BALANCE - AMT_RECEIVABLE_PRINCIPAL'] = df_card['AMT_BALANCE'] - df_card['AMT_RECEIVABLE_PRINCIPAL']
        df_card['card AMT_BALANCE - AMT_TOTAL_RECEIVABLE'] = df_card['AMT_BALANCE'] - df_card['AMT_TOTAL_RECEIVABLE']

        df_card['card AMT_DRAWINGS_CURRENT - AMT_DRAWINGS_ATM_CURRENT'] = df_card['AMT_DRAWINGS_CURRENT'] - df_card['AMT_DRAWINGS_ATM_CURRENT']
        df_card['card AMT_DRAWINGS_CURRENT - AMT_DRAWINGS_OTHER_CURRENT'] = df_card['AMT_DRAWINGS_CURRENT'] - df_card['AMT_DRAWINGS_OTHER_CURRENT']
        df_card['card AMT_DRAWINGS_CURRENT - AMT_DRAWINGS_POS_CURRENT'] = df_card['AMT_DRAWINGS_CURRENT'] - df_card['AMT_DRAWINGS_POS_CURRENT']

        # Categorical features with One-Hot encode
        df_card, categorical = one_hot_encoder(df_card)

        # Aggregations for application set
        aggregations = {}
        for col in df_card.columns:
            aggregations[col] = ['mean'] if col in categorical else ['min', 'max', 'size', 'mean', 'var', 'sum']
        df_card_agg = df_card.groupby('SK_ID_CURR').agg(aggregations)
        df_card_agg.columns = pd.Index(['CARD_' + e[0] + "_" + e[1].upper() for e in df_card_agg.columns.tolist()])

        # Count credit card lines
        df_card_agg['CARD_COUNT'] = df_card.groupby('SK_ID_CURR').size()
        del df_card
        gc.collect()

        return df_card_agg
コード例 #7
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        pos = PosCash.get_df(conf)
        pos, cat_cols = one_hot_encoder(pos, nan_as_category=True)
        # Features
        aggregations = {
            'MONTHS_BALANCE': ['max', 'mean', 'size'],
            'SK_DPD': ['max', 'mean'],
            'SK_DPD_DEF': ['max', 'mean']
        }
        for cat in cat_cols:
            aggregations[cat] = ['mean']

        pos_agg = pos.groupby('SK_ID_CURR').agg(aggregations)
        pos_agg.columns = pd.Index([
            'POS_' + e[0] + "_" + e[1].upper()
            for e in pos_agg.columns.tolist()
        ])
        # Count pos cash accounts
        pos_agg['POS_COUNT'] = pos.groupby('SK_ID_CURR').size()
        del pos
        gc.collect()
        return pos_agg
コード例 #8
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        df_bureau_b = BureauBalance.get_df(conf)

        # Some new features in bureau_balance set
        tmp = df_bureau_b[['SK_ID_BUREAU', 'STATUS']].groupby('SK_ID_BUREAU')
        tmp_last = tmp.last()
        tmp_last.columns = ['First_status']
        df_bureau_b = df_bureau_b.join(tmp_last, how='left', on='SK_ID_BUREAU')
        tmp_first = tmp.first()
        tmp_first.columns = ['Last_status']
        df_bureau_b = df_bureau_b.join(tmp_first,
                                       how='left',
                                       on='SK_ID_BUREAU')
        del tmp, tmp_first, tmp_last
        gc.collect()

        tmp = df_bureau_b[['SK_ID_BUREAU',
                           'MONTHS_BALANCE']].groupby('SK_ID_BUREAU').last()
        tmp = tmp.apply(abs)
        tmp.columns = ['Month']
        df_bureau_b = df_bureau_b.join(tmp, how='left', on='SK_ID_BUREAU')
        del tmp
        gc.collect()

        tmp = df_bureau_b.loc[df_bureau_b['STATUS'] == 'C', ['SK_ID_BUREAU', 'MONTHS_BALANCE']] \
            .groupby('SK_ID_BUREAU').last()
        tmp = tmp.apply(abs)
        tmp.columns = ['When_closed']
        df_bureau_b = df_bureau_b.join(tmp, how='left', on='SK_ID_BUREAU')
        del tmp
        gc.collect()

        df_bureau_b['Month_closed_to_end'] = df_bureau_b[
            'Month'] - df_bureau_b['When_closed']

        for c in range(6):
            tmp = df_bureau_b.loc[df_bureau_b['STATUS'] == str(c), ['SK_ID_BUREAU', 'MONTHS_BALANCE']] \
                             .groupby('SK_ID_BUREAU').count()
            tmp.columns = ['DPD_' + str(c) + '_cnt']
            df_bureau_b = df_bureau_b.join(tmp, how='left', on='SK_ID_BUREAU')
            df_bureau_b['DPD_' + str(c) + ' / Month'] = df_bureau_b[
                'DPD_' + str(c) + '_cnt'] / df_bureau_b['Month']
            del tmp
            gc.collect()
        df_bureau_b['Non_zero_DPD_cnt'] = df_bureau_b[[
            'DPD_1_cnt', 'DPD_2_cnt', 'DPD_3_cnt', 'DPD_4_cnt', 'DPD_5_cnt'
        ]].sum(axis=1)

        df_bureau_b, bureau_b_cat = one_hot_encoder(df_bureau_b)

        # Bureau balance: Perform aggregations
        aggregations = {}
        for col in df_bureau_b.columns:
            aggregations[col] = ['mean'] if col in bureau_b_cat else [
                'min', 'max', 'size'
            ]
        df_bureau_b_agg = df_bureau_b.groupby('SK_ID_BUREAU').agg(aggregations)
        df_bureau_b_agg.columns = pd.Index([
            e[0] + "_" + e[1].upper()
            for e in df_bureau_b_agg.columns.tolist()
        ])
        del df_bureau_b
        gc.collect()

        df_bureau = Bureau.get_df(conf)

        # Replace\remove some outliers in bureau set
        df_bureau.loc[df_bureau['AMT_ANNUITY'] > .8e8, 'AMT_ANNUITY'] = np.nan
        df_bureau.loc[df_bureau['AMT_CREDIT_SUM'] > 3e8,
                      'AMT_CREDIT_SUM'] = np.nan
        df_bureau.loc[df_bureau['AMT_CREDIT_SUM_DEBT'] > 1e8,
                      'AMT_CREDIT_SUM_DEBT'] = np.nan
        df_bureau.loc[df_bureau['AMT_CREDIT_MAX_OVERDUE'] > .8e8,
                      'AMT_CREDIT_MAX_OVERDUE'] = np.nan
        df_bureau.loc[df_bureau['DAYS_ENDDATE_FACT'] < -10000,
                      'DAYS_ENDDATE_FACT'] = np.nan
        df_bureau.loc[(df_bureau['DAYS_CREDIT_UPDATE'] > 0) |
                      (df_bureau['DAYS_CREDIT_UPDATE'] < -40000),
                      'DAYS_CREDIT_UPDATE'] = np.nan
        df_bureau.loc[df_bureau['DAYS_CREDIT_ENDDATE'] < -10000,
                      'DAYS_CREDIT_ENDDATE'] = np.nan

        df_bureau.drop(df_bureau[
            df_bureau['DAYS_ENDDATE_FACT'] < df_bureau['DAYS_CREDIT']].index,
                       inplace=True)

        # Some new features in bureau set
        df_bureau['bureau AMT_CREDIT_SUM - AMT_CREDIT_SUM_DEBT'] = df_bureau[
            'AMT_CREDIT_SUM'] - df_bureau['AMT_CREDIT_SUM_DEBT']
        df_bureau['bureau AMT_CREDIT_SUM - AMT_CREDIT_SUM_LIMIT'] = df_bureau[
            'AMT_CREDIT_SUM'] - df_bureau['AMT_CREDIT_SUM_LIMIT']
        df_bureau[
            'bureau AMT_CREDIT_SUM - AMT_CREDIT_SUM_OVERDUE'] = df_bureau[
                'AMT_CREDIT_SUM'] - df_bureau['AMT_CREDIT_SUM_OVERDUE']

        df_bureau['bureau DAYS_CREDIT - CREDIT_DAY_OVERDUE'] = df_bureau[
            'DAYS_CREDIT'] - df_bureau['CREDIT_DAY_OVERDUE']
        df_bureau['bureau DAYS_CREDIT - DAYS_CREDIT_ENDDATE'] = df_bureau[
            'DAYS_CREDIT'] - df_bureau['DAYS_CREDIT_ENDDATE']
        df_bureau['bureau DAYS_CREDIT - DAYS_ENDDATE_FACT'] = df_bureau[
            'DAYS_CREDIT'] - df_bureau['DAYS_ENDDATE_FACT']
        df_bureau[
            'bureau DAYS_CREDIT_ENDDATE - DAYS_ENDDATE_FACT'] = df_bureau[
                'DAYS_CREDIT_ENDDATE'] - df_bureau['DAYS_ENDDATE_FACT']
        df_bureau[
            'bureau DAYS_CREDIT_UPDATE - DAYS_CREDIT_ENDDATE'] = df_bureau[
                'DAYS_CREDIT_UPDATE'] - df_bureau['DAYS_CREDIT_ENDDATE']

        # Categorical features with One-Hot encode
        df_bureau, bureau_cat = one_hot_encoder(df_bureau)

        # Bureau balance: merge with bureau.csv
        df_bureau = df_bureau.join(df_bureau_b_agg,
                                   how='left',
                                   on='SK_ID_BUREAU')
        df_bureau.drop('SK_ID_BUREAU', axis=1, inplace=True)
        del df_bureau_b_agg
        gc.collect()

        # Bureau and bureau_balance aggregations for application set
        categorical = bureau_cat + bureau_b_cat
        aggregations = {}
        for col in df_bureau.columns:
            aggregations[col] = ['mean'] if col in categorical else [
                'min', 'max', 'size', 'mean', 'var', 'sum'
            ]
        df_bureau_agg = df_bureau.groupby('SK_ID_CURR').agg(aggregations)
        df_bureau_agg.columns = pd.Index([
            'BURO_' + e[0] + "_" + e[1].upper()
            for e in df_bureau_agg.columns.tolist()
        ])

        # Bureau: Active credits
        active_agg = df_bureau[df_bureau['CREDIT_ACTIVE_Active'] == 1].groupby(
            'SK_ID_CURR').agg(aggregations)
        active_agg.columns = pd.Index([
            'ACTIVE_' + e[0] + "_" + e[1].upper()
            for e in active_agg.columns.tolist()
        ])
        df_bureau_agg = df_bureau_agg.join(active_agg, how='left')
        del active_agg
        gc.collect()

        # Bureau: Closed credits
        closed_agg = df_bureau[df_bureau['CREDIT_ACTIVE_Closed'] == 1].groupby(
            'SK_ID_CURR').agg(aggregations)
        closed_agg.columns = pd.Index([
            'CLOSED_' + e[0] + "_" + e[1].upper()
            for e in closed_agg.columns.tolist()
        ])
        df_bureau_agg = df_bureau_agg.join(closed_agg, how='left')
        del closed_agg, df_bureau
        gc.collect()

        return df_bureau_agg
コード例 #9
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        bureau = Bureau.get_df(conf)
        bureau, bureau_cat = one_hot_encoder(bureau, True)

        bb = BureauBalance.get_df(conf)
        bb, bb_cat = one_hot_encoder(bb, True)

        # Bureau balance: Perform aggregations and merge with bureau.csv
        bb_aggregations = {'MONTHS_BALANCE': ['min', 'max', 'size']}
        for col in bb_cat:
            bb_aggregations[col] = ['mean']
        bb_agg = bb.groupby('SK_ID_BUREAU').agg(bb_aggregations)
        bb_agg.columns = pd.Index(
            [e[0] + "_" + e[1].upper() for e in bb_agg.columns.tolist()])
        bureau = bureau.join(bb_agg, how='left', on='SK_ID_BUREAU')
        bureau.drop(['SK_ID_BUREAU'], axis=1, inplace=True)
        del bb, bb_agg
        gc.collect()

        # Bureau and bureau_balance numeric features
        num_aggregations = {
            'DAYS_CREDIT': ['mean', 'var'],
            'DAYS_CREDIT_ENDDATE': ['mean'],
            'DAYS_CREDIT_UPDATE': ['mean'],
            'CREDIT_DAY_OVERDUE': ['mean'],
            'AMT_CREDIT_MAX_OVERDUE': ['mean'],
            'AMT_CREDIT_SUM': ['mean', 'sum'],
            'AMT_CREDIT_SUM_DEBT': ['mean', 'sum'],
            'AMT_CREDIT_SUM_OVERDUE': ['mean'],
            'AMT_CREDIT_SUM_LIMIT': ['mean', 'sum'],
            'AMT_ANNUITY': ['max', 'mean'],
            'CNT_CREDIT_PROLONG': ['sum'],
            'MONTHS_BALANCE_MIN': ['min'],
            'MONTHS_BALANCE_MAX': ['max'],
            'MONTHS_BALANCE_SIZE': ['mean', 'sum']
        }
        # Bureau and bureau_balance categorical features
        cat_aggregations = {}
        for cat in bureau_cat:
            cat_aggregations[cat] = ['mean']
        for cat in bb_cat:
            cat_aggregations[cat + "_MEAN"] = ['mean']

        bureau_agg = bureau.groupby('SK_ID_CURR').agg({
            **num_aggregations,
            **cat_aggregations
        })
        bureau_agg.columns = pd.Index([
            'BURO_' + e[0] + "_" + e[1].upper()
            for e in bureau_agg.columns.tolist()
        ])
        # Bureau: Active credits - using only numerical aggregations
        active = bureau[bureau['CREDIT_ACTIVE_Active'] == 1]
        active_agg = active.groupby('SK_ID_CURR').agg(num_aggregations)
        active_agg.columns = pd.Index([
            'ACTIVE_' + e[0] + "_" + e[1].upper()
            for e in active_agg.columns.tolist()
        ])
        bureau_agg = bureau_agg.join(active_agg, how='left', on='SK_ID_CURR')
        del active, active_agg
        gc.collect()
        # Bureau: Closed credits - using only numerical aggregations
        closed = bureau[bureau['CREDIT_ACTIVE_Closed'] == 1]
        closed_agg = closed.groupby('SK_ID_CURR').agg(num_aggregations)
        closed_agg.columns = pd.Index([
            'CLOSED_' + e[0] + "_" + e[1].upper()
            for e in closed_agg.columns.tolist()
        ])
        bureau_agg = bureau_agg.join(closed_agg, how='left', on='SK_ID_CURR')
        del closed, closed_agg, bureau
        gc.collect()
        return bureau_agg
コード例 #10
0
    def _create_feature(cls, conf) -> pd.DataFrame:
        df_prev = PreviousApplication.get_df(conf)

        # Replace some outliers
        df_prev.loc[df_prev['AMT_CREDIT'] > 6000000, 'AMT_CREDIT'] = np.nan
        df_prev.loc[df_prev['SELLERPLACE_AREA'] > 3500000,
                    'SELLERPLACE_AREA'] = np.nan
        df_prev[[
            'DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE',
            'DAYS_LAST_DUE_1ST_VERSION', 'DAYS_LAST_DUE', 'DAYS_TERMINATION'
        ]].replace(365243, np.nan, inplace=True)

        # Some new features
        df_prev['prev missing'] = df_prev.isnull().sum(axis=1).values
        df_prev['prev AMT_APPLICATION / AMT_CREDIT'] = df_prev[
            'AMT_APPLICATION'] / df_prev['AMT_CREDIT']
        df_prev['prev AMT_APPLICATION - AMT_CREDIT'] = df_prev[
            'AMT_APPLICATION'] - df_prev['AMT_CREDIT']
        df_prev['prev AMT_APPLICATION - AMT_GOODS_PRICE'] = df_prev[
            'AMT_APPLICATION'] - df_prev['AMT_GOODS_PRICE']
        df_prev['prev AMT_GOODS_PRICE - AMT_CREDIT'] = df_prev[
            'AMT_GOODS_PRICE'] - df_prev['AMT_CREDIT']
        df_prev['prev DAYS_FIRST_DRAWING - DAYS_FIRST_DUE'] = df_prev[
            'DAYS_FIRST_DRAWING'] - df_prev['DAYS_FIRST_DUE']
        df_prev['prev DAYS_TERMINATION less -500'] = (
            df_prev['DAYS_TERMINATION'] < -500).astype(int)

        # Categorical features with One-Hot encode
        df_prev, categorical = one_hot_encoder(df_prev)

        # Aggregations for application set
        aggregations = {}
        for col in df_prev.columns:
            aggregations[col] = ['mean'] if col in categorical else [
                'min', 'max', 'size', 'mean', 'var', 'sum'
            ]
        df_prev_agg = df_prev.groupby('SK_ID_CURR').agg(aggregations)
        df_prev_agg.columns = pd.Index([
            'PREV_' + e[0] + "_" + e[1].upper()
            for e in df_prev_agg.columns.tolist()
        ])

        # Previous Applications: Approved Applications
        approved_agg = df_prev[df_prev['NAME_CONTRACT_STATUS_Approved'] ==
                               1].groupby('SK_ID_CURR').agg(aggregations)
        approved_agg.columns = pd.Index([
            'APPROVED_' + e[0] + "_" + e[1].upper()
            for e in approved_agg.columns.tolist()
        ])
        df_prev_agg = df_prev_agg.join(approved_agg, how='left')
        del approved_agg
        gc.collect()

        # Previous Applications: Refused Applications
        refused_agg = df_prev[df_prev['NAME_CONTRACT_STATUS_Refused'] ==
                              1].groupby('SK_ID_CURR').agg(aggregations)
        refused_agg.columns = pd.Index([
            'REFUSED_' + e[0] + "_" + e[1].upper()
            for e in refused_agg.columns.tolist()
        ])
        df_prev_agg = df_prev_agg.join(refused_agg, how='left')
        del refused_agg, df_prev
        gc.collect()

        return df_prev_agg
コード例 #11
0
 def _create_feature(cls, conf) -> pd.DataFrame:
     df = Application.get_df(conf)
     df = ApplicationFeatures._features_from_kernel(df)
     df = ApplicationFeatures._binarize_features(df)
     df, _cat_cols = one_hot_encoder(df, True)
     return ApplicationFeatures._filter_features(df)