def predict(self, data_inst, predict_param=None): LOGGER.info("start predict") cache_dataset_key = self.predict_data_cache.get_data_key(data_inst) if cache_dataset_key in self.data_alignment_map: data_inst = self.data_alignment_map[cache_dataset_key] else: data_inst = self.data_alignment(data_inst) header = [None] * len(self.feature_name_fid_mapping) for idx, col in self.feature_name_fid_mapping.items(): header[idx] = col data_inst = data_overview.header_alignment(data_inst, header) self.data_alignment_map[cache_dataset_key] = data_inst rounds = len(self.trees_) // self.tree_dim predict_start_round = self.sync_predict_start_round() for i in range(predict_start_round, rounds): # n_tree = self.trees_[i] for tidx in range(self.tree_dim): LOGGER.info( "start to predict, boost round: {}, tree index: {}".format( i, tidx)) tree_inst = HeteroDecisionTreeHost(self.tree_param) tree_inst.load_model(self.tree_meta, self.trees_[i * self.tree_dim + tidx]) # tree_inst.set_tree_model(self.trees_[i * self.tree_dim + tidx]) tree_inst.set_flowid(self.generate_flowid(i, tidx)) tree_inst.set_runtime_idx( self.component_properties.local_partyid) tree_inst.predict(data_inst) LOGGER.info("end predict")
def predict(self, data_inst, predict_param=None): LOGGER.info("start predict") for i in range(len(self.trees_)): n_tree = self.trees_[i] for tidx in range(len(n_tree)): tree_inst = HeteroDecisionTreeHost(self.tree_param) tree_inst.set_tree_model(n_tree[tidx]) tree_inst.set_flowid(self.generate_flowid(i, tidx)) tree_inst.predict(data_inst) LOGGER.info("end predict")
def predict_f_value(self, data_inst, predict_start_round, rounds): for i in range(predict_start_round, rounds): # n_tree = self.trees_[i] for tidx in range(self.tree_dim): tree_inst = HeteroDecisionTreeHost(self.tree_param) tree_inst.load_model(self.tree_meta, self.trees_[i * self.tree_dim + tidx]) # tree_inst.set_tree_model(self.trees_[i * self.tree_dim + tidx]) tree_inst.set_flowid(self.generate_flowid(i, tidx)) tree_inst.set_runtime_idx( self.component_properties.local_partyid) tree_inst.predict(data_inst)
def predict(self, data_inst, predict_param=None): LOGGER.info("start predict") data_inst = self.data_alignment(data_inst) rounds = len(self.trees_) // self.tree_dim for i in range(rounds): for tidx in range(self.tree_dim): tree_inst = HeteroDecisionTreeHost(self.tree_param) tree_inst.load_model(self.tree_meta, self.trees_[i * self.tree_dim + tidx]) tree_inst.set_flowid(self.generate_flowid(i, tidx)) tree_inst.set_runtime_idx(self.runtime_idx) tree_inst.predict(data_inst) LOGGER.info("end predict")
def predict(self, data_inst, predict_param=None): LOGGER.info("start predict") data_inst = self.data_alignment(data_inst) rounds = len(self.trees_) // self.tree_dim predict_start_round = self.sync_predict_start_round() for i in range(predict_start_round, rounds): # n_tree = self.trees_[i] for tidx in range(self.tree_dim): tree_inst = HeteroDecisionTreeHost(self.tree_param) tree_inst.load_model(self.tree_meta, self.trees_[i * self.tree_dim + tidx]) # tree_inst.set_tree_model(self.trees_[i * self.tree_dim + tidx]) tree_inst.set_flowid(self.generate_flowid(i, tidx)) tree_inst.set_runtime_idx( self.component_properties.local_partyid) tree_inst.predict(data_inst) LOGGER.info("end predict")