コード例 #1
0
    def GetStress(self, StrainTensor, time=None):
        # time not used here because this law require no time effect
        # initilialize values plasticity variables if required
        if self.__P is None:
            self.__P = np.zeros(len(StrainTensor[0]))
            self.__currentP = np.zeros(len(StrainTensor[0]))
        if self.__PlasticStrainTensor is None:
            self.__PlasticStrainTensor = listStrainTensor(
                np.zeros((6, len(StrainTensor[0]))))
            self.__currentPlasticStrainTensor = listStrainTensor(
                np.zeros((6, len(StrainTensor[0]))))

        H = self.GetHelas(
        )  #no change of basis because only isotropic behavior are considered
        sigma = listStressTensor([
            sum([(StrainTensor[j] - self.__PlasticStrainTensor[j]) * H[i][j]
                 for j in range(6)]) for i in range(6)
        ])
        test = self.YieldFunction(sigma, self.__P) > self.__tol
        #        print(sum(test)/len(test)*100)

        sigmaFull = np.array(sigma).T
        Ep = np.array(self.__PlasticStrainTensor).T
        #        Ep = np.array(self.__currentPlasticStrainTensor).T

        for pg in range(len(sigmaFull)):
            if test[pg] > 0:
                sigma = listStressTensor(sigmaFull[pg])
                p = self.__P[pg]
                iter = 0
                while abs(self.YieldFunction(sigma, p)) > self.__tol:
                    dphi_dp = self.HardeningFunctionDerivative(p)
                    dphi_dsigma = np.array(
                        self.YieldFunctionDerivativeSigma(sigma))

                    Lambda = dphi_dsigma  #for associated plasticity
                    B = sum([
                        sum([dphi_dsigma[j] * H[i][j]
                             for j in range(6)]) * Lambda[i] for i in range(6)
                    ])

                    dp = self.YieldFunction(sigma, p) / (B - dphi_dp)
                    p += dp
                    Ep[pg] += Lambda * dp
                    sigma = listStressTensor([
                        sum([(StrainTensor[j][pg] - Ep[pg][j]) * H[i][j]
                             for j in range(6)]) for i in range(6)
                    ])
                self.__currentP[pg] = p
                sigmaFull[pg] = sigma

        self.__currentPlasticStrainTensor = listStrainTensor(Ep.T)
        self.__currentSigma = listStressTensor(sigmaFull.T)  # list of 6 objets

        return self.__currentSigma
コード例 #2
0
 def YieldFunctionDerivativeSigma(self, sigma):
     """
     Derivative of the Yield Function with respect to the stress tensor defined in sigma
     sigma should be a listStressTensor object
     """
     return listStressTensor((3 / 2) * np.array(sigma.deviatoric()) /
                             sigma.vonMises()).toStrain()
コード例 #3
0
    def GetStress(self, StrainTensor):
        H = self.__ChangeBasisH(self.GetH())
        sigma = listStressTensor([
            sum([StrainTensor[j] * H[i][j] for j in range(6)])
            for i in range(6)
        ])

        return sigma  # list of 6 objets
コード例 #4
0
    def GetStressTensor(self, U, constitutiveLaw, Type="Nodal"):
        """
        Not a static method.
        Return the Stress Tensor of an assembly using the Voigt notation as a python list. 
        The total displacement field and a ConstitutiveLaw have to be given.
        
        Can only be used for linear constitutive law. 
        For non linear ones, use the GetStress method of the ConstitutiveLaw object.

        Options : 
        - Type :"Nodal", "Element" or "GaussPoint" integration (default : "Nodal")

        See GetNodeResult, GetElementResult and GetGaussPointResult.

        example : 
        S = SpecificAssembly.GetStressTensor(Problem.Problem.GetDoFSolution('all'), SpecificConstitutiveLaw)
        """
        if isinstance(constitutiveLaw, str):
            constitutiveLaw = ConstitutiveLaw.GetAll()[constitutiveLaw]

        if Type == "Nodal":
            return listStressTensor([
                self.GetNodeResult(e, U)
                if e != 0 else np.zeros(self.__Mesh.GetNumberOfNodes())
                for e in constitutiveLaw.GetStressOperator()
            ])

        elif Type == "Element":
            return listStressTensor([
                self.GetElementResult(e, U)
                if e != 0 else np.zeros(self.__Mesh.GetNumberOfElements())
                for e in constitutiveLaw.GetStressOperator()
            ])

        elif Type == "GaussPoint":
            NumberOfGaussPointValues = self.__Mesh.GetNumberOfElements(
            ) * self.__nb_pg  #Assembly.__saveOperator[(self.__Mesh.GetID(), self.__elmType, self.__nb_pg)][0].shape[0]
            return listStressTensor([
                self.GetGaussPointResult(e, U)
                if e != 0 else np.zeros(NumberOfGaussPointValues)
                for e in constitutiveLaw.GetStressOperator()
            ])

        else:
            assert 0, "Wrong argument for Type: use 'Nodal', 'Element', or 'GaussPoint'"
コード例 #5
0
 def GetCurrentStress(self):  #same as GetPKII (used for small def)
     return listStressTensor(self.PKII.T)
コード例 #6
0
 def GetCauchy(self):
     return listStressTensor(self.Cauchy.T)
コード例 #7
0
 def GetKirchhoff(self):
     return listStressTensor(self.Kirchhoff.T)
コード例 #8
0
 def GetPKII(self):
     return listStressTensor(self.PKII.T)