コード例 #1
0
	def supply_shape_derivative(self, shape_derivative):
		"""Overrides the shape derivative of the reduced cost functional.
		
		This allows users to implement their own shape derivative and use cashocs as a
		solver library only.
		
		Parameters
		----------
		shape_derivative : ufl.form.Form
			The shape_derivative of the reduced (!) cost functional w.r.t. controls.

		Returns
		-------
		None
		"""
		
		try:
			if not shape_derivative.__module__ == 'ufl.form' and type(shape_derivative).__name__ == 'Form':
				raise InputError('cashocs._shape_optimization.shape_optimization_problem.ShapeOptimizationProblem.supply_shape_derivative',
								 'shape_derivative', 'shape_derivative have to be a ufl form')
		except:
			raise InputError('cashocs._shape_optimization.shape_optimization_problem.ShapeOptimizationProblem.supply_shape_derivative',
							 'shape_derivative', 'shape_derivative has to be a ufl form')
		
		if len(shape_derivative.arguments()) == 2:
			raise InputError('cashocs._shape_optimization.shape_optimization_problem.ShapeOptimizationProblem.supply_shape_derivative',
							 'shape_derivative', 'Do not use TrialFunction for the shape_derivative.')
		elif len(shape_derivative.arguments()) == 0:
			raise InputError('cashocs._shape_optimization.shape_optimization_problem.ShapeOptimizationProblem.supply_shape_derivative',
							 'shape_derivative', 'The specified shape_derivative must include a TestFunction object.')
		
		if not shape_derivative.arguments()[0].ufl_function_space().ufl_element() == self.form_handler.deformation_space.ufl_element():
			raise InputError('cashocs._shape_optimization.shape_optimization_problem.ShapeOptimizationProblem.supply_shape_derivative',
							 'shape_derivative', 'The TestFunction has to be chosen from the same space as the corresponding adjoint.')
		
		if not shape_derivative.arguments()[0].ufl_function_space() == self.form_handler.deformation_space:
			shape_derivative = replace(shape_derivative, {shape_derivative.arguments()[0] : self.form_handler.test_vector_field})
		
		if self.form_handler.degree_estimation:
			estimated_degree = np.maximum(estimate_total_polynomial_degree(self.form_handler.riesz_scalar_product),
											   estimate_total_polynomial_degree(shape_derivative))
			self.form_handler.assembler = fenics.SystemAssembler(self.form_handler.riesz_scalar_product, shape_derivative, self.form_handler.bcs_shape,
													form_compiler_parameters={'quadrature_degree' : estimated_degree})
		else:
			try:
				self.form_handler.assembler = fenics.SystemAssembler(self.form_handler.riesz_scalar_product, shape_derivative, self.form_handler.bcs_shape)
			except (AssertionError, ValueError):
				estimated_degree = np.maximum(estimate_total_polynomial_degree(self.form_handler.riesz_scalar_product),
											   estimate_total_polynomial_degree(shape_derivative))
				self.form_handler.assembler = fenics.SystemAssembler(self.form_handler.riesz_scalar_product, shape_derivative, self.form_handler.bcs_shape,
													form_compiler_parameters={'quadrature_degree' : estimated_degree})
		
		self.has_custom_derivative = True
コード例 #2
0
ファイル: krylov_solver.py プロジェクト: vpuri3/pyadjoint
    def _forward_solve(self, lhs, rhs, func, bcs, **kwargs):
        solver = self.block_helper.forward_solver
        if solver is None:
            solver = backend.KrylovSolver(self.method, self.preconditioner)
            if self.assemble_system:
                A, _ = backend.assemble_system(lhs, rhs, bcs)
                if self.pc_operator is not None:
                    P = self._replace_form(self.pc_operator)
                    P, _ = backend.assemble_system(P, rhs, bcs)
                    solver.set_operators(A, P)
                else:
                    solver.set_operator(A)
            else:
                A = compat.assemble_adjoint_value(lhs)
                [bc.apply(A) for bc in bcs]
                if self.pc_operator is not None:
                    P = self._replace_form(self.pc_operator)
                    P = compat.assemble_adjoint_value(P)
                    [bc.apply(P) for bc in bcs]
                    solver.set_operators(A, P)
                else:
                    solver.set_operator(A)
            self.block_helper.forward_solver = solver

        if self.assemble_system:
            system_assembler = backend.SystemAssembler(lhs, rhs, bcs)
            b = backend.Function(self.function_space).vector()
            system_assembler.assemble(b)
        else:
            b = compat.assemble_adjoint_value(rhs)
            [bc.apply(b) for bc in bcs]

        solver.parameters.update(self.krylov_solver_parameters)
        solver.solve(func.vector(), b)
        return func
コード例 #3
0
ファイル: lu_solver.py プロジェクト: vpuri3/pyadjoint
    def _forward_solve(self, lhs, rhs, func, bcs, **kwargs):
        solver = self.block_helper.forward_solver
        if solver is None:
            if self.assemble_system:
                A, _ = backend.assemble_system(lhs, rhs, bcs,
                                               **self.assemble_kwargs)
            else:
                A = compat.assemble_adjoint_value(lhs, **self.assemble_kwargs)
                [bc.apply(A) for bc in bcs]

            solver = backend.LUSolver(A, self.method)
            self.block_helper.forward_solver = solver

        if self.assemble_system:
            system_assembler = backend.SystemAssembler(lhs, rhs, bcs)
            b = backend.Function(self.function_space).vector()
            system_assembler.assemble(b)
        else:
            b = compat.assemble_adjoint_value(rhs)
            [bc.apply(b) for bc in bcs]

        if self.ident_zeros_tol is not None:
            A.ident_zeros(self.ident_zeros_tol)

        solver.parameters.update(self.lu_solver_parameters)
        solver.solve(func.vector(), b)
        return func
コード例 #4
0
    def __init__(self,
                 lagrangian,
                 bcs_list,
                 states,
                 adjoints,
                 boundaries,
                 config,
                 ksp_options,
                 adjoint_ksp_options,
                 shape_scalar_product=None,
                 deformation_space=None):
        """Initializes the ShapeFormHandler object.

		Parameters
		----------
		lagrangian : cashocs._forms.Lagrangian
			The Lagrangian corresponding to the shape optimization problem
		bcs_list : list[list[dolfin.fem.dirichletbc.DirichletBC]]
			list of boundary conditions for the state variables
		states : list[dolfin.function.function.Function]
			list of state variables
		adjoints : list[dolfin.function.function.Function]
			list of adjoint variables
		boundaries : dolfin.cpp.mesh.MeshFunctionSizet
			a MeshFunction for the boundary markers
		config : configparser.ConfigParser
			the configparser object storing the problems config
		ksp_options : list[list[list[str]]]
			The list of command line options for the KSP for the
			state systems.
		adjoint_ksp_options : list[list[list[str]]]
			The list of command line options for the KSP for the
			adjoint systems.
		shape_scalar_product : ufl.form.Form
			The weak form of the scalar product used to determine the
			shape gradient.
		"""

        FormHandler.__init__(self, lagrangian, bcs_list, states, adjoints,
                             config, ksp_options, adjoint_ksp_options)

        self.boundaries = boundaries
        self.shape_scalar_product = shape_scalar_product

        self.degree_estimation = self.config.getboolean('ShapeGradient',
                                                        'degree_estimation',
                                                        fallback=False)
        self.use_pull_back = self.config.getboolean('ShapeGradient',
                                                    'use_pull_back',
                                                    fallback=True)

        if deformation_space is None:
            self.deformation_space = fenics.VectorFunctionSpace(
                self.mesh, 'CG', 1)
        else:
            self.deformation_space = deformation_space

        self.test_vector_field = fenics.TestFunction(self.deformation_space)

        self.regularization = Regularization(self)

        # Calculate the necessary UFL forms
        self.inhomogeneous_mu = False
        self.__compute_shape_derivative()
        self.__compute_shape_gradient_forms()
        self.__setup_mu_computation()

        if self.degree_estimation:
            self.estimated_degree = np.maximum(
                estimate_total_polynomial_degree(self.riesz_scalar_product),
                estimate_total_polynomial_degree(self.shape_derivative))
            self.assembler = fenics.SystemAssembler(self.riesz_scalar_product,
                                                    self.shape_derivative,
                                                    self.bcs_shape,
                                                    form_compiler_parameters={
                                                        'quadrature_degree':
                                                        self.estimated_degree
                                                    })
        else:
            try:
                self.assembler = fenics.SystemAssembler(
                    self.riesz_scalar_product, self.shape_derivative,
                    self.bcs_shape)
            except (AssertionError, ValueError):
                self.estimated_degree = np.maximum(
                    estimate_total_polynomial_degree(
                        self.riesz_scalar_product),
                    estimate_total_polynomial_degree(self.shape_derivative))
                self.assembler = fenics.SystemAssembler(
                    self.riesz_scalar_product,
                    self.shape_derivative,
                    self.bcs_shape,
                    form_compiler_parameters={
                        'quadrature_degree': self.estimated_degree
                    })

        self.assembler.keep_diagonal = True
        self.fe_scalar_product_matrix = fenics.PETScMatrix()
        self.fe_shape_derivative_vector = fenics.PETScVector()

        self.update_scalar_product()

        # test for symmetry
        if not self.scalar_product_matrix.isSymmetric():
            if not self.scalar_product_matrix.isSymmetric(1e-15):
                if not (self.scalar_product_matrix -
                        self.scalar_product_matrix.copy().transpose()
                        ).norm() / self.scalar_product_matrix.norm() < 1e-15:
                    raise InputError(
                        'cashocs._forms.ShapeFormHandler',
                        'shape_scalar_product',
                        'Supplied scalar product form is not symmetric.')

        if self.opt_algo == 'newton' \
          or (self.opt_algo == 'pdas' and self.inner_pdas == 'newton'):
            raise NotImplementedError(
                'Second order methods are not implemented for shape optimization yet'
            )
コード例 #5
0
ファイル: nonlinear_solvers.py プロジェクト: sblauth/cashocs
def damped_newton_solve(F, u, bcs, rtol=1e-10, atol=1e-10, max_iter=50, convergence_type='combined', norm_type='l2',
						damped=True, verbose=True, ksp=None, ksp_options=None):
	r"""A damped Newton method for solving nonlinear equations.

	The damped Newton method is based on the natural monotonicity test from
	`Deuflhard, Newton methods for nonlinear problems <https://doi.org/10.1007/978-3-642-23899-4>`_.
	It also allows fine tuning via a direct interface, and absolute, relative,
	and combined stopping criteria. Can also be used to specify the solver for
	the inner (linear) subproblems via petsc ksps.

	The method terminates after ``max_iter`` iterations, or if a termination criterion is
	satisfied. These criteria are given by

	- a relative one in case ``convergence_type = 'rel'``, i.e.,

	.. math:: \lvert\lvert F_{k} \rvert\rvert \leq \texttt{rtol} \lvert\lvert F_0 \rvert\rvert.

	- an absolute one in case ``convergence_type = 'abs'``, i.e.,

	.. math:: \lvert\lvert F_{k} \rvert\rvert \leq \texttt{atol}.

	- a combination of both in case ``convergence_type = 'combined'``, i.e.,

	.. math:: \lvert\lvert F_{k} \rvert\rvert \leq \texttt{atol} + \texttt{rtol} \lvert\lvert F_0 \rvert\rvert.

	The norm chosen for the termination criterion is specified via ``norm_type``.

	Parameters
	----------
	F : ufl.form.Form
		The variational form of the nonlinear problem to be solved by Newton's method.
	u : dolfin.function.function.Function
		The sought solution / initial guess. It is not assumed that the initial guess
		satisfies the Dirichlet boundary conditions, they are applied automatically.
		The method overwrites / updates this Function.
	bcs : list[dolfin.fem.dirichletbc.DirichletBC]
		A list of DirichletBCs for the nonlinear variational problem.
	rtol : float, optional
		Relative tolerance of the solver if convergence_type is either ``'combined'`` or ``'rel'``
		(default is ``rtol = 1e-10``).
	atol : float, optional
		Absolute tolerance of the solver if convergence_type is either ``'combined'`` or ``'abs'``
		(default is ``atol = 1e-10``).
	max_iter : int, optional
		Maximum number of iterations carried out by the method
		(default is ``max_iter = 50``).
	convergence_type : {'combined', 'rel', 'abs'}
		Determines the type of stopping criterion that is used.
	norm_type : {'l2', 'linf'}
		Determines which norm is used in the stopping criterion.
	damped : bool, optional
		If ``True``, then a damping strategy is used. If ``False``, the classical
		Newton-Raphson iteration (without damping) is used (default is ``True``).
	verbose : bool, optional
		If ``True``, prints status of the iteration to the console (default
		is ``True``).
	ksp : petsc4py.PETSc.KSP, optional
		The PETSc ksp object used to solve the inner (linear) problem
		if this is ``None`` it uses the direct solver MUMPS (default is
		``None``).
	ksp_options : list[list[str]]
		The list of options for the linear solver.


	Returns
	-------
	dolfin.function.function.Function
		The solution of the nonlinear variational problem, if converged.
		This overrides the input function u.


	Examples
	--------
	Consider the problem

	.. math::
		\begin{alignedat}{2}
		- \Delta u + u^3 &= 1 \quad &&\text{ in } \Omega=(0,1)^2 \\
		u &= 0 \quad &&\text{ on } \Gamma.
		\end{alignedat}

	This is solved with the code ::

		from fenics import *
		import cashocs

		mesh, _, boundaries, dx, _, _ = cashocs.regular_mesh(25)
		V = FunctionSpace(mesh, 'CG', 1)

		u = Function(V)
		v = TestFunction(V)
		F = inner(grad(u), grad(v))*dx + pow(u,3)*v*dx - Constant(1)*v*dx
		bcs = cashocs.create_bcs_list(V, Constant(0.0), boundaries, [1,2,3,4])
		cashocs.damped_newton_solve(F, u, bcs)
	"""

	if not convergence_type in ['rel', 'abs', 'combined']:
		raise InputError('cashocs.nonlinear_solvers.damped_newton_solve', 'convergence_type', 'Input convergence_type has to be one of \'rel\', \'abs\', or \'combined\'.')

	if not norm_type in ['l2', 'linf']:
		raise InputError('cashocs.nonlinear_solvers.damped_newton_solve', 'norm_type', 'Input norm_type has to be one of \'l2\' or \'linf\'.')

	# create the PETSc ksp
	if ksp is None:
		if ksp_options is None:
			ksp_options = [
				['ksp_type', 'preonly'],
				['pc_type', 'lu'],
				['pc_factor_mat_solver_type', 'mumps'],
				['mat_mumps_icntl_24', 1]
			]

		ksp = PETSc.KSP().create()
		_setup_petsc_options([ksp], [ksp_options])
		ksp.setFromOptions()

	# Calculate the Jacobian.
	dF = fenics.derivative(F, u)

	# Setup increment and function for monotonicity test
	V = u.function_space()
	du = fenics.Function(V)
	ddu = fenics.Function(V)
	u_save = fenics.Function(V)

	iterations = 0

	[bc.apply(u.vector()) for bc in bcs]
	# copy the boundary conditions and homogenize them for the increment
	bcs_hom = [fenics.DirichletBC(bc) for bc in bcs]
	[bc.homogenize() for bc in bcs_hom]

	assembler = fenics.SystemAssembler(dF, -F, bcs_hom)
	assembler.keep_diagonal = True
	A_fenics = fenics.PETScMatrix()
	residual = fenics.PETScVector()

	# Compute the initial residual
	assembler.assemble(A_fenics, residual)
	A_fenics.ident_zeros()
	A = fenics.as_backend_type(A_fenics).mat()
	b = fenics.as_backend_type(residual).vec()

	res_0 = residual.norm(norm_type)
	if res_0 == 0.0:
		if verbose:
			print('Residual vanishes, input is already a solution.')
		return u

	res = res_0
	if verbose:
		print('Newton Iteration ' + format(iterations, '2d') + ' - residual (abs):  '
			  + format(res, '.3e') + ' (tol = ' + format(atol, '.3e') + ')    residual (rel): '
			  + format(res/res_0, '.3e') + ' (tol = ' + format(rtol, '.3e') + ')')

	if convergence_type == 'abs':
		tol = atol
	elif convergence_type == 'rel':
		tol = rtol*res_0
	else:
		tol = rtol*res_0 + atol

	# While loop until termination
	while res > tol and iterations < max_iter:
		iterations += 1
		lmbd = 1.0
		breakdown = False
		u_save.vector()[:] = u.vector()[:]

		# Solve the inner problem
		_solve_linear_problem(ksp, A, b, du.vector().vec(), ksp_options)
		du.vector().apply('')

		# perform backtracking in case damping is used
		if damped:
			while True:
				u.vector()[:] += lmbd*du.vector()[:]
				assembler.assemble(residual)
				b = fenics.as_backend_type(residual).vec()
				_solve_linear_problem(ksp=ksp, b=b, x=ddu.vector().vec(), ksp_options=ksp_options)
				ddu.vector().apply('')

				if ddu.vector().norm(norm_type)/du.vector().norm(norm_type) <= 1:
					break
				else:
					u.vector()[:] = u_save.vector()[:]
					lmbd /= 2

				if lmbd < 1e-6:
					breakdown = True
					break

		else:
			u.vector()[:] += du.vector()[:]

		if breakdown:
			raise NotConvergedError('Newton solver (state system)', 'Stepsize for increment too low.')

		if iterations == max_iter:
			raise NotConvergedError('Newton solver (state system)', 'Maximum number of iterations were exceeded.')

		# compute the new residual
		assembler.assemble(A_fenics, residual)
		A_fenics.ident_zeros()
		A = fenics.as_backend_type(A_fenics).mat()
		b = fenics.as_backend_type(residual).vec()

		[bc.apply(residual) for bc in bcs_hom]

		res = residual.norm(norm_type)
		if verbose:
			print('Newton Iteration ' + format(iterations, '2d') + ' - residual (abs):  '
				  + format(res, '.3e') + ' (tol = ' + format(atol, '.3e') + ')    residual (rel): '
				  + format(res/res_0, '.3e') + ' (tol = ' + format(rtol, '.3e') + ')')

		if res < tol:
			if verbose:
				print('\nNewton Solver converged after ' + str(iterations) + ' iterations.\n')
			break

	return u