コード例 #1
0
def project_gradient_neumann(
        f0,
        degree=None,
        mesh=None,
        solver_type='gmres',
        preconditioner_type='default'
    ):
    """Find an approximation to f0 that has the same gradient

    The resulting function also satisfies homogeneous Neumann boundary
    conditions.

    Parameters:    
    f0: the function to approximate
    mesh=None: the mesh on which to approximate it If not provided, the
        mesh is extracted from f0.
    degree=None: degree of the polynomial approximation. extracted
        from f0 if not provided. 
    solver_type='gmres': The linear solver type to use.
    preconditioner_type='default': Preconditioner type to use
    """
    if not mesh: mesh = f0.function_space().mesh()
    element = f0.ufl_element()
    if not degree:
        degree = element.degree()
    CE = FiniteElement('CG', mesh.ufl_cell(), degree)
    CS = FunctionSpace(mesh, CE)
    DE = FiniteElement('DG', mesh.ufl_cell(), degree)
    DS = FunctionSpace(mesh, DE)
    CVE = VectorElement('CG', mesh.ufl_cell(), degree - 1)
    CV = FunctionSpace(mesh, CVE)
    RE = FiniteElement('R', mesh.ufl_cell(), 0)
    R = FunctionSpace(mesh, RE)
    CRE = MixedElement([CE, RE])
    CR = FunctionSpace(mesh, CRE)
    f = fe.project(f0, CS,
                   solver_type=solver_type,
                   preconditioner_type=preconditioner_type)
    g = fe.project(fe.grad(f), CV,
                   solver_type=solver_type,
                   preconditioner_type=preconditioner_type)
    lf = fe.project(fe.nabla_div(g), CS,
                    solver_type=solver_type,
                    preconditioner_type=preconditioner_type)
    tf, tc = TrialFunction(CR)
    wf, wc = TestFunctions(CR)
    dx = Measure('dx', domain=mesh,
                 metadata={'quadrature_degree': min(degree, 10)})
    a = (fe.dot(fe.grad(tf), fe.grad(wf)) + tc * wf + tf * wc) * dx
    L = (f * wc - lf * wf) * dx
    igc = Function(CR)
    fe.solve(a == L, igc,
             solver_parameters={'linear_solver': solver_type,
                                 'preconditioner': preconditioner_type}
    )
    ig, c = igc.sub(0), igc.sub(1)
    igd = fe.project(ig, DS,
                     solver_type=solver_type,
                     preconditioner_type=preconditioner_type)
    return igd
コード例 #2
0
ファイル: ksdgsoln.py プロジェクト: leonavery/KSDG
def CGelement(fs):
    """Make a CG element corresponding to a DG FunctionSpace."""
    elements = []
    for ss in (fs.split()):
        CE = FiniteElement('CG', ss.ufl_cell(), ss.ufl_element().degree())
        elements.append(CE)
    return MixedElement(elements)
コード例 #3
0
ファイル: ksdgsolver.py プロジェクト: leonavery/KSDG
 def make_function_space(self, mesh=None, dim=None, degree=None):
     if not mesh: mesh = self.mesh
     if not dim: dim = self.dim
     if not degree: degree = self.degree
     SE = FiniteElement('DG', cellShapes[dim - 1], degree)
     SS = FunctionSpace(mesh, SE)  # scalar space
     VE = MixedElement(SE, SE)
     VS = FunctionSpace(mesh, VE)  # vector space
     return dict(SE=SE, SS=SS, VE=VE, VS=VS)
コード例 #4
0
ファイル: ksdgmultper.py プロジェクト: leonavery/KSDG
 def make_function_space(self, mesh=None, dim=None, degree=None):
     if not mesh: mesh = self.mesh
     if not dim: dim = self.dim
     if not degree: degree = self.degree
     SE = FiniteElement('DG', cellShapes[dim - 1], degree)
     SS = FunctionSpace(mesh, SE)  # scalar space
     elements = [SE] * ((self.nligands + 1) * 2**self.dim)
     VE = MixedElement(elements)
     VS = FunctionSpace(mesh, VE)  # vector space
     logPERIODIC('VS', VS)
     return dict(SE=SE, SS=SS, VE=VE, VS=VS)
コード例 #5
0
ファイル: ksdgvar.py プロジェクト: leonavery/KSDG
 def restart(self):
     logVARIABLE('restart')
     self.set_time(self.t0)
     CE = FiniteElement('CG', cellShapes[self.dim - 1], self.degree)
     CS = FunctionSpace(self.mesh, CE)  # scalar space
     coords = gather_dof_coords(CS)
     fe.assign(self.sol.sub(0),
               function_interpolate(self.rho0, self.SS, coords=coords))
     for i, U0i in enumerate(self.U0s):
         fe.assign(self.sol.sub(i + 1),
                   function_interpolate(U0i, self.SS, coords=coords))
コード例 #6
0
ファイル: ksdgsolver.py プロジェクト: leonavery/KSDG
 def restart(self):
     logSOLVER('restart')
     self.t = self.t0
     CE = FiniteElement('CG', cellShapes[self.dim - 1], self.degree)
     CS = FunctionSpace(self.mesh, CE)  # scalar space
     coords = gather_dof_coords(CS)
     logSOLVER('function_interpolate(self.U0, self.SS, coords=coords)',
               function_interpolate(self.U0, self.SS, coords=coords))
     fe.assign(self.sol.sub(1),
               function_interpolate(self.U0, self.SS, coords=coords))
     logSOLVER('U0 assign returned')
     fe.assign(self.sol.sub(0),
               function_interpolate(self.rho0, self.SS, coords=coords))
コード例 #7
0
    def compute_steady_state(self):

        names = {'Cl', 'Na', 'K'}

        P1 = FiniteElement('P', fe.triangle, 1)
        element = MixedElement([P1, P1, P1])
        V = FunctionSpace(self.mesh, element)
        self.V_conc = V

        (u_cl, u_na, u_k) = TrialFunction(V)
        (v_cl, v_na, v_k) = TestFunction(V)

        assert (self.flow is not None)

        n = fe.FacetNormal(self.mesh)

        # F = ( self.F_diff_conv(u_cl, v_cl, n, grad(self.phi), 1. ,1., 0.)
        #    + self.F_diff_conv(u_na, v_na, n, grad(self.phi), 1. ,1., 0.)
        #    + self.F_diff_conv(u_k , v_k , n, grad(self.phi), 1. ,1., 0.) )

        dx, ds = self.dx, self.ds
        flow = self.flow
        F = inner(grad(u_cl), grad(v_cl)) * dx \
            + inner(flow, grad(u_cl)) * v_cl * dx \
            + inner(grad(u_na), grad(v_na)) * dx \
            + inner(flow, grad(u_na)) * v_na * dx \
            + inner(grad(u_k), grad(v_k)) * dx \
            + inner(flow, grad(u_k)) * v_k * dx

        a, L = fe.lhs(F), fe.rhs(F)
        a_mat = fe.assemble(a)
        L_vec = fe.assemble(L)
        # solve
        u = Function(V)
        fe.solve(a_mat, u.vector(), L_vec)

        u_cl, u_na, u_k = u.split()

        output1 = fe.File('/tmp/steady_state_cl.pvd')
        output1 << u_cl
        output2 = fe.File('/tmp/steady_state_na.pvd')
        output2 << u_na
        output3 = fe.File('/tmp/steady_state_k.pvd')
        output3 << u_k

        self.u_cl = u_cl
        self.u_na = u_na
        self.u_k = u_k
コード例 #8
0
ファイル: spaces.py プロジェクト: MSoszynska/Shooting
    def __init__(self, mesh, N=0):

        # Define mesh parameters
        self.mesh = mesh
        self.cell_size = CellDiameter(mesh)
        self.normal_vector = FacetNormal(mesh)

        # Define measures
        inner_boundary = Inner_boundary()
        sub_domains = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
        sub_domains.set_all(0)
        inner_boundary.mark(sub_domains, 1)
        self.dx = Measure("dx", domain=mesh)
        self.ds = Measure("ds", domain=mesh, subdomain_data=sub_domains)

        # Define function spaces
        finite_element = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
        self.function_space = FunctionSpace(mesh,
                                            finite_element * finite_element)
        self.function_space_split = [
            self.function_space.sub(0).collapse(),
            self.function_space.sub(1).collapse(),
        ]
コード例 #9
0
    def compute_conv_diff_reac_video(self, initial_condition=None, video_ref=None, video_size=None):

        names = {'Cl', 'K'}


        P1 = FiniteElement('P', fe.triangle, 1)
        element = fe.MixedElement([P1, P1])
        V_single = FunctionSpace(self.mesh, P1)
        V = FunctionSpace(self.mesh, element)
        self.V_conc = V

        # load video
        video = VideoData(element=P1)
        video.load_video(self.video_filename)

        if( video_ref is not None and video_size is not None):
            video.set_reference_frame(video_ref, video_size)


        print(video)

        dt = 0.05
        t = 0.
        t_end = 20.

        u_init = Function(V)
        (u_cl, u_k) = TrialFunction(V)
        (v_cl, v_k) = TestFunction(V)

        #u_na = video


        if initial_condition is None:
            #initial_condition = Expression(("f*exp(-0.5*((x[0]-a)*(x[0]-a)+(x[1]-b)*(x[1]-b))/var)/(sqrt(2*pi)*var)",
            #                                "0."), a = 80, b= 55, var=10, f=10, pi=fe.pi, element=element)

            initial_condition = Expression(("f",
                                            "0."), a=80, b=55, var=0.1, f=0.1, pi=fe.pi, element=element)

        u_init = fe.interpolate(initial_condition, V)
        u_init_cl = u_init[0]

        u_init_k = u_init[1]
        u_init_na : VideoData= video

        assert (self.flow is not None)

        n = fe.FacetNormal(self.mesh)

        dx, ds = self.dx, self.ds
        flow = 5. * self.flow
        f_in = fe.Constant(0.00)
        f_in_cl = fe.Constant(-0.05)
        D = fe.Constant(0.1)

        C_na = fe.Constant(0.1)
        k1 = fe.Constant(0.2)
        k_1 = fe.Constant(0.00001)
        # explicit
        F = (
                (u_cl - u_init_cl) * v_cl * dx
                + dt * D * inner(grad(u_cl), grad(v_cl)) * dx
                + dt * inner(flow, grad(u_cl)) * v_cl * dx
                #+ (u_na - u_init_na) * v_na * dx
                #+ dt * D * inner(grad(u_na), grad(v_na)) * dx
                #+ dt * inner(flow, grad(u_na)) * v_na * dx
                + (u_k - u_init_k) * v_k * dx
                + dt * D * inner(grad(u_k), grad(v_k)) * dx
                + dt * inner(flow, grad(u_k)) * v_k * dx
                + f_in_cl * v_cl * dx
                #+ f_in * v_na * dx
                + f_in * v_k * dx
                + dt * k1 * u_init_cl * C_na * u_init_na * v_cl * dx
                #+ dt * k1 * u_init_cl * u_init_na * v_na * dx
                - dt * k1 * u_init_cl * C_na * u_init_na * v_k * dx
                - dt * k_1 * u_init_k * v_cl * dx
                #- dt * k_1 * u_init_k * v_na * dx
                + dt * k_1 * u_init_k * v_k * dx
        )
        # implicit
        F = (
                (u_cl - u_init_cl) * v_cl * dx
                + dt * D * inner(grad(u_cl), grad(v_cl)) * dx
                + dt * inner(flow, grad(u_cl)) * v_cl * dx
                # + (u_na - u_init_na) * v_na * dx
                # + dt * D * inner(grad(u_na), grad(v_na)) * dx
                # + dt * inner(flow, grad(u_na)) * v_na * dx
                + (u_k - u_init_k) * v_k * dx
                + dt * D * inner(grad(u_k), grad(v_k)) * dx
                + dt * inner(flow, grad(u_k)) * v_k * dx
                + f_in_cl * v_cl * dx
                # + f_in * v_na * dx
                + f_in * v_k * dx
                + dt * k1 * u_cl * C_na * u_init_na * v_cl * dx
                # + dt * k1 * u_init_cl * u_init_na * v_na * dx
                - dt * k1 * u_cl * C_na * u_init_na * v_k * dx
                - dt * k_1 * u_k * v_cl * dx
                # - dt * k_1 * u_init_k * v_na * dx
                + dt * k_1 * u_k * v_k * dx
        )

        self.F = F

        a, L = fe.lhs(F), fe.rhs(F)
        a_mat = fe.assemble(a)
        L_vec = fe.assemble(L)

        output1 = fe.File('/tmp/cl_dyn.pvd')
        output2 = fe.File('/tmp/na_dyn.pvd')
        output3 = fe.File('/tmp/k_dyn.pvd')
        output4 = fe.File('/tmp/all_dyn.pvd')
        # solve

        self.sol = []

        u_na = Function(V_single)
        u_na = fe.interpolate(u_init_na,V_single)

        na_inflow = 0

        t_plot = 0.5
        t_last_plot = 0

        while t < t_end:
            t = t + dt
            t_last_plot += dt
            print(t)

            u = Function(V)

            u_init_na.set_time(5*t)

            a_mat = fe.assemble(a)
            L_vec = fe.assemble(L)
            fe.solve(a_mat, u.vector(), L_vec)
            # NonlinearVariationalProblem(F,u)
            u_init.assign(u)

            u_cl, u_k = u.split()

            # u_init_cl.assign(u_cl)
            # u_init_na.assign(u_na)
            # u_init_k.assign(u_k)

            u_na = fe.interpolate(u_init_na, V_single)

            u_cl.rename("cl", "cl")
            u_na.rename("na", "na")
            u_k.rename("k", "k")
            output1 << u_cl, t
            output2 << u_na, t
            output3 << u_k, t
            self.sol.append((u_cl, u_na, u_k))

            print( fe.assemble(u_cl*self.dx))

            if t_last_plot > t_plot:
                t_last_plot = 0
                plt.figure(figsize=(8,16))
                plt.subplot(211)
                fe.plot(u_cl)
                plt.subplot(212)
                fe.plot(u_k)
                plt.show()



        self.u_cl = u_cl
        #self.u_na = u_na
        self.u_k = u_k
コード例 #10
0
    def compute_conv_diff_reac(self, initial_condition=None):

        names = {'Cl', 'Na', 'K'}

        dt = 0.1
        t = 0.
        t_end = 1.

        P1 = FiniteElement('P', fe.triangle, 3)
        element = MixedElement([P1, P1, P1])
        V = FunctionSpace(self.mesh, element)
        self.V_conc = V

        u_init = Function(V)
        (u_cl, u_na, u_k) = TrialFunction(V)
        (v_cl, v_na, v_k) = TestFunction(V)

        if initial_condition is None:
            initial_condition = Expression(("exp(-((x[0]-0.1)*(x[0]-0.1)+x[1]*x[1])/0.01)",
                                            "exp(-((x[0]-0.12)*(x[0]-0.12)+x[1]*x[1])/0.01)",
                                            "0."), element=element)

        u_init = fe.interpolate(initial_condition, V)
        u_init_cl = u_init[0]
        u_init_na = u_init[1]
        u_init_k = u_init[2]

        assert (self.flow is not None)

        n = fe.FacetNormal(self.mesh)

        dx, ds = self.dx, self.ds
        flow = 10 * self.flow
        f_in = fe.Constant(0.00)
        D = fe.Constant(0.01)
        k1 = fe.Constant(0.1)
        k_1 = fe.Constant(0.001)
        F = (
                (u_cl - u_init_cl) * v_cl * dx
                + dt * D * inner(grad(u_cl), grad(v_cl)) * dx
                + dt * inner(flow, grad(u_cl)) * v_cl * dx
                + (u_na - u_init_na) * v_na * dx
                + dt * D * inner(grad(u_na), grad(v_na)) * dx
                + dt * inner(flow, grad(u_na)) * v_na * dx
                + (u_k - u_init_k) * v_k * dx
                + dt * D * inner(grad(u_k), grad(v_k)) * dx
                + dt * inner(flow, grad(u_k)) * v_k * dx
                + f_in * v_cl * dx
                + f_in * v_na * dx
                + f_in * v_k * dx
                + dt * k1 * u_init_cl * u_init_na * v_cl * dx
                + dt * k1 * u_init_cl * u_init_na * v_na * dx
                - dt * k1 * u_init_cl * u_init_na * v_k * dx
                - dt * k_1 * u_init_k * v_cl * dx
                - dt * k_1 * u_init_k * v_na * dx
                + dt * k_1 * u_init_k * v_k * dx
        )

        self.F = F

        a, L = fe.lhs(F), fe.rhs(F)
        a_mat = fe.assemble(a)
        L_vec = fe.assemble(L)

        output1 = fe.File('/tmp/cl_dyn.pvd')
        output2 = fe.File('/tmp/na_dyn.pvd')
        output3 = fe.File('/tmp/k_dyn.pvd')
        output4 = fe.File('/tmp/all_dyn.pvd')
        # solve

        self.sol = []

        while t < t_end:
            t = t + dt
            print(t)

            u = Function(V)

            a_mat = fe.assemble(a)
            L_vec = fe.assemble(L)
            fe.solve(a_mat, u.vector(), L_vec)
            # NonlinearVariationalProblem(F,u)
            u_init.assign(u)

            u_cl, u_na, u_k = u.split()

            # u_init_cl.assign(u_cl)
            # u_init_na.assign(u_na)
            # u_init_k.assign(u_k)

            u_cl.rename("cl", "cl")
            u_na.rename("na", "na")
            u_k.rename("k", "k")
            output1 << u_cl, t
            output2 << u_na, t
            output3 << u_k, t
            self.sol.append((u_cl, u_na, u_k))



        self.u_cl = u_cl
        self.u_na = u_na
        self.u_k = u_k
コード例 #11
0
def project_gradient(
        f0,
        mesh=None,
        degree=None,
        debug=False,
        solver_type='gmres',
        preconditioner_type='default'
    ):
    """Find an approximation to f0 that has the same gradient

    Parameters:    
    f0: the function to approximate
    mesh=None: the mesh on which to approximate it. If not provided, the
        mesh is extracted from f0.
    degree=None: degree of the polynomial approximation. extracted
        from f0 if not provided. 
    solver_type='gmres': The linear solver type to use.
    preconditioner_type='default': Preconditioner type to use
    """
    if not mesh: mesh = f0.function_space().mesh()
    element = f0.ufl_element()
    if not degree:
        degree = element.degree()
    CE = FiniteElement('CG', mesh.ufl_cell(), degree)
    CS = FunctionSpace(mesh, CE)
    DE = FiniteElement('DG', mesh.ufl_cell(), degree)
    DS = FunctionSpace(mesh, DE)
    CVE = VectorElement('CG', mesh.ufl_cell(), degree - 1)
    CV = FunctionSpace(mesh, CVE)
    RE = FiniteElement('R', mesh.ufl_cell(), 0)
    R = FunctionSpace(mesh, RE)
    CRE = MixedElement([CE, RE])
    CR = FunctionSpace(mesh, CRE)
    f = fe.project(f0, CS,
                   solver_type=solver_type,
                   preconditioner_type= preconditioner_type)
    g = fe.project(fe.grad(f), CV,
                   solver_type=solver_type,
                   preconditioner_type= preconditioner_type)
    tf, tc = TrialFunction(CR)
    wf, wc = TestFunctions(CR)
    dx = Measure('dx', domain=mesh,
                 metadata={'quadrature_degree': min(degree, 10)})
    a = (fe.dot(fe.grad(tf), fe.grad(wf)) + tc * wf + tf * wc) * fe.dx
    L = (f * wc + fe.dot(g, fe.grad(wf))) * fe.dx
    igc = Function(CR)
    fe.solve(a == L, igc,
             solver_parameters={'linear_solver': solver_type,
                                 'preconditioner': preconditioner_type}
    )
    if debug:
        print('igc', igc.vector()[:])
    assigner = FunctionAssigner(CS, CR.sub(0))
#    ig = Function(CS)
#    assigner.assign(ig, igc.sub(0))
#    fe.assign(ig, igc.sub(0))
#    if debug:
#        print('ig', igc.sub(0).vector()[:])
    igd = fe.project(igc.sub(0), DS,
                     solver_type=solver_type,
                     preconditioner_type=preconditioner_type)
    if debug:
        print('igd', igd.vector()[:])
    return igd