コード例 #1
0
def compute_errors(u_e, u):
    """Compute various measures of the error u - u_e, where
    u is a finite element Function and u_e is an Expression.

    Adapted from https://fenicsproject.org/pub/tutorial/html/._ftut1020.html
    """
    print('u_e', u_e.ufl_element().degree())
    # Get function space
    V = u.function_space()

    # Explicit computation of L2 norm
    error = (u - u_e)**2 * dl.dx
    E1 = np.sqrt(abs(dla.assemble(error)))

    # Explicit interpolation of u_e onto the same space as u
    u_e_ = dla.interpolate(u_e, V)
    error = (u - u_e_)**2 * dl.dx
    E2 = np.sqrt(abs(dla.assemble(error)))

    # Explicit interpolation of u_e to higher-order elements.
    # u will also be interpolated to the space Ve before integration
    Ve = dl.FunctionSpace(V.mesh(), 'P', 5)
    u_e_ = dla.interpolate(u_e, Ve)
    error = (u - u_e)**2 * dl.dx
    E3 = np.sqrt(abs(dla.assemble(error)))

    # Infinity norm based on nodal values
    u_e_ = dla.interpolate(u_e, V)
    E4 = abs(u_e_.vector().get_local() - u.vector().get_local()).max()

    # L2 norm
    E5 = dl.errornorm(u_e, u, norm_type='L2', degree_rise=3)

    # H1 seminorm
    E6 = dl.errornorm(u_e, u, norm_type='H10', degree_rise=3)

    # Collect error measures in a dictionary with self-explanatory keys
    errors = {
        'u - u_e': E1,
        'u - interpolate(u_e, V)': E2,
        'interpolate(u, Ve) - interpolate(u_e, Ve)': E3,
        'infinity norm (of dofs)': E4,
        'L2 norm': E5,
        'H10 seminorm': E6
    }

    return errors
コード例 #2
0
def run_model(function_space,
              kappa,
              forcing,
              init_condition,
              dt,
              final_time,
              boundary_conditions=None,
              second_order_timestepping=False,
              exact_sol=None,
              velocity=None,
              point_sources=None,
              intermediate_times=None):
    """
    Use implicit euler to solve transient advection diffusion equation

    du/dt = grad (k* grad u) - vel*grad u + f

    WARNING: when point sources solution changes significantly when mesh is 
    varied
    """
    mesh = function_space.mesh()

    time_independent_boundaries = False
    if boundary_conditions is None:
        bndry_obj = dl.CompiledSubDomain("on_boundary")
        boundary_conditions = [['dirichlet', bndry_obj, dla.Constant(0)]]
        time_independent_boundaries = True

    num_bndrys = len(boundary_conditions)
    boundaries = mark_boundaries(mesh, boundary_conditions)
    dirichlet_bcs = collect_dirichlet_boundaries(function_space,
                                                 boundary_conditions,
                                                 boundaries)

    # To express integrals over the boundary parts using ds(i), we must first
    # redefine the measure ds in terms of our boundary markers:
    ds = dl.Measure('ds', domain=mesh, subdomain_data=boundaries)
    dx = dl.Measure('dx', domain=mesh)

    # Variational problem at each time
    u = dl.TrialFunction(function_space)
    v = dl.TestFunction(function_space)

    # Previous solution
    if hasattr(init_condition, 't'):
        assert init_condition.t == 0
    u_1 = dla.interpolate(init_condition, function_space)

    if not second_order_timestepping:
        theta = 1
    else:
        theta = 0.5

    if hasattr(forcing, 't'):
        forcing_1 = copy_expression(forcing)
    else:
        forcing_1 = forcing

    def steady_state_form(u, v, f):
        F = kappa * dl.inner(dl.grad(u), dl.grad(v)) * dx
        F -= f * v * dx
        if velocity is not None:
            F += dl.dot(velocity, dl.grad(u)) * v * dx
        return F

    F = u*v*dx-u_1*v*dx + dt*theta*steady_state_form(u, v, forcing) + \
        dt*(1.-theta)*steady_state_form(u_1, v, forcing_1)
    a, L = dl.lhs(F), dl.rhs(F)

    # a = u*v*dx + theta*dt*kappa*dl.inner(dl.grad(u), dl.grad(v))*dx
    # L = (u_1 + dt*theta*forcing)*v*dx

    # if velocity is not None:
    #     a += theta*dt*v*dl.dot(velocity,dl.grad(u))*dx

    # if second_order_timestepping:
    #     L -= (1-theta)*dt*dl.inner(kappa*dl.grad(u_1), dl.grad(v))*dx
    #     L += (1-theta)*dt*forcing_1*v*dx

    #     if velocity is not None:
    #         L -= (1-theta)*dt*(v*dl.dot(velocity,dl.grad(u_1)))*dx

    beta_1_list = []
    alpha_1_list = []
    for ii in range(num_bndrys):
        if (boundary_conditions[ii][0] == 'robin'):
            alpha = boundary_conditions[ii][3]
            a += theta * dt * alpha * u * v * ds(ii)
            if second_order_timestepping:
                if hasattr(alpha, 't'):
                    alpha_1 = copy_expression(alpha)
                    alpha_1_list.append(alpha_1)
                else:
                    alpha_1 = alpha
                L -= (1 - theta) * dt * alpha_1 * u_1 * v * ds(ii)

        if ((boundary_conditions[ii][0] == 'robin')
                or (boundary_conditions[ii][0] == 'neumann')):
            beta = boundary_conditions[ii][2]
            L -= theta * dt * beta * v * ds(ii)
            if second_order_timestepping:
                if hasattr(beta, 't'):
                    beta_1 = copy_expression(beta)
                    beta_1_list.append(beta_1)
                else:
                    # boundary condition is constant in time
                    beta_1 = beta
                L -= (1 - theta) * dt * beta_1 * v * ds(ii)

    if time_independent_boundaries:
        # TODO this can be used if dirichlet and robin conditions are not
        # time dependent.
        A = dla.assemble(a)
        for bc in dirichlet_bcs:
            bc.apply(A)
        solver = dla.LUSolver(A)
        #solver.parameters["reuse_factorization"] = True
    else:
        solver = None

    u_2 = dla.Function(function_space)
    u_2.assign(u_1)
    t = 0.0

    dt_tol = 1e-12
    n_time_steps = 0
    if intermediate_times is not None:
        intermediate_u = []
        intermediate_cnt = 0
        # assert in chronological order
        assert np.allclose(intermediate_times, np.array(intermediate_times))
        assert np.all(intermediate_times < final_time)

    while t < final_time - dt_tol:
        # Update current time
        prev_t = t
        forcing_1.t = prev_t
        t += dt
        t = min(t, final_time)
        forcing.t = t

        # set current time for time varying boundary conditions
        for ii in range(num_bndrys):
            if hasattr(boundary_conditions[ii][2], 't'):
                boundary_conditions[ii][2].t = t

        # set previous time for time varying boundary conditions when
        # using second order timestepping. lists will be empty if using
        # first order timestepping
        for jj in range(len(beta_1_list)):
            beta_1_list[jj].t = prev_t
        for jj in range(len(alpha_1_list)):
            alpha_1_list[jj].t = prev_t

        #A, b = dl.assemble_system(a, L, dirichlet_bcs)
        # for bc in dirichlet_bcs:
        #    bc.apply(A,b)
        if boundary_conditions is not None:
            A = dla.assemble(a)
            for bc in dirichlet_bcs:
                bc.apply(A)

        b = dla.assemble(L)
        for bc in dirichlet_bcs:
            bc.apply(b)

        if point_sources is not None:
            ps_list = []
            for ii in range(len(point_sources)):
                point, expr = point_sources[ii]
                ps_list.append((dl.Point(point[0], point[1]), expr(t)))
            ps = dla.PointSource(function_space, ps_list)
            ps.apply(b)

        if solver is None:
            dla.solve(A, u_2.vector(), b)
        else:
            solver.solve(u_2.vector(), b)

        # tape = dla.get_working_tape()
        # tape.visualise()

        #print ("t =", t, "end t=", final_time)

        # Update previous solution
        u_1.assign(u_2)
        # import matplotlib.pyplot as plt
        # plt.subplot(131)
        # pp=dl.plot(u_1)
        # plt.subplot(132)
        # dl.plot(forcing,mesh=mesh)
        # plt.subplot(133)
        # dl.plot(forcing_1,mesh=mesh)
        # plt.colorbar(pp)
        # plt.show()

        # compute error
        if exact_sol is not None:
            exact_sol.t = t
            error = dl.errornorm(exact_sol, u_2)
            print('t = %.2f: error = %.3g' % (t, error))
            # dl.plot(exact_sol,mesh=mesh)
            # plt.show()

        if (intermediate_times is not None
                and intermediate_cnt < intermediate_times.shape[0]
                and t >= intermediate_times[intermediate_cnt]):
            # save solution closest to intermediate time
            u_t = dla.Function(function_space)
            u_t.assign(u_2)
            intermediate_u.append(u_t)
            intermediate_cnt += 1
        n_time_steps += 1
    # print ("t =", t, "end t=", final_time,"# time steps", n_time_steps)

    if intermediate_times is None:
        return u_2
    else:
        return intermediate_u + [u_2]
コード例 #3
0
def test_fenics_forward():
    numpy_output, _, _, _, = evaluate_primal(assemble_fenics, templates, *inputs)
    u1 = fa.interpolate(fa.Constant(1.0), V)
    J = assemble_fenics(u1, fa.Constant(0.5), fa.Constant(0.6))
    assert np.isclose(numpy_output, J)
コード例 #4
0
def run_model(function_space, time_step, final_time, forcing,
              boundary_conditions, init_condition, nonlinear_diffusion,
              second_order_timestepping=False, nlsparam=dict(),
              positivity_tol=0):

    if boundary_conditions is None:
        bndry_obj = dl.CompiledSubDomain("on_boundary")
        boundary_conditions = [['dirichlet', bndry_obj, dla.Constant(0)]]

    dt = time_step
    mesh = function_space.mesh()
    num_bndrys = len(boundary_conditions)
    assert num_bndrys > 0  # specify None for no boundaries

    if (len(boundary_conditions) == 1 and
            isinstance(boundary_conditions[0][2], dla.DirichletBC)):
        ds = dl.Measure('ds', domain=mesh)
        dirichlet_bcs = [boundary_conditions[0][2]]
    else:
        boundaries = mark_boundaries(mesh, boundary_conditions)
        dirichlet_bcs = collect_dirichlet_boundaries(
            function_space, boundary_conditions, boundaries)
        ds = dl.Measure('ds', domain=mesh, subdomain_data=boundaries)

    dx = dl.Measure('dx', domain=mesh)

    u = dl.TrialFunction(function_space)
    v = dl.TestFunction(function_space)

    # Previous solution
    u_1 = dla.interpolate(init_condition, function_space)

    u_2 = dla.Function(function_space)
    u_2.assign(u_1)

    if not second_order_timestepping:
        theta = 1
    else:
        theta = 0.5

    if second_order_timestepping and hasattr(forcing, 't'):
        forcing_1 = copy_expression(forcing)
    else:
        forcing_1 = forcing

    kappa = nonlinear_diffusion(u)
    a = u*v*dx + theta*dt*kappa*dl.inner(dl.grad(u), dl.grad(v))*dx
    L = (u_1 + theta*dt*forcing)*v*dx

    # subtract of positivity preserving part added to diffusion
    if positivity_tol > 0:
        a -= positivity_tol*dl.inner(dl.grad(u), dl.grad(v))*dx

    if second_order_timestepping:
        kappa_1 = nonlinear_diffusion(u_1)
        L -= (1-theta)*dt*kappa_1*dl.inner(dl.grad(u_1), dl.grad(v))*dx
        L += (1-theta)*dt*forcing_1*v*dx

    beta_1_list = []
    alpha_1_list = []
    for ii in range(num_bndrys):
        if (boundary_conditions[ii][0] == 'robin'):
            alpha = boundary_conditions[ii][3]
            a += theta*dt*alpha*u*v*ds(ii)
            if second_order_timestepping:
                if hasattr(alpha, 't'):
                    alpha_1 = copy_expression(alpha)
                    alpha_1_list.append(alpha_1)
                else:
                    alpha_1 = alpha
                L -= (1-theta)*dt*alpha_1*u_1*v*ds(ii)

        if ((boundary_conditions[ii][0] == 'robin') or
                (boundary_conditions[ii][0] == 'neumann')):
            beta = boundary_conditions[ii][2]
            print(type(theta), type(dt), type(beta), type(v))
            L -= theta*dt*beta*v*ds(ii)
            if second_order_timestepping:
                if hasattr(beta, 't'):
                    beta_1 = copy_expression(beta)
                    beta_1_list.append(beta_1)
                else:
                    # boundary condition is constant in time
                    beta_1 = beta
                L -= (1-theta)*dt*beta_1*v*ds(ii)

    if hasattr(init_condition, 't'):
        t = init_condition.t
    else:
        t = 0.0
    while t < final_time:
        # print('TIME',t)
        # Update current time
        prev_t = t
        forcing_1.t = prev_t
        t += dt
        t = min(t, final_time)
        forcing.t = t

        # set current time for time varying boundary conditions
        for ii in range(num_bndrys):
            if hasattr(boundary_conditions[ii][2], 't'):
                boundary_conditions[ii][2].t = t

        # set previous time for time varying boundary conditions when
        # using second order timestepping. lists will be empty if using
        # first order timestepping
        for jj in range(len(beta_1_list)):
            beta_1_list[jj].t = prev_t
        for jj in range(len(alpha_1_list)):
            alpha_1_list[jj].t = prev_t

        # solver must be redefined at every timestep
        F = a-L
        F = dl.action(F, u_2)
        J = dl.derivative(F, u_2, u)
        dla.solve(F == 0, u_2, dirichlet_bcs, J=J, solver_parameters=nlsparam)

        # import matplotlib.pyplot as plt
        # pl = dl.plot(sol); plt.colorbar(pl); plt.show()
        # import matplotlib.pyplot as plt
        # pl = dl.plot(sol); plt.show()

        # Update previous solution
        u_1.assign(u_2)

    return u_1