コード例 #1
0
def RunAcoustic(q):
    Nxy = 100
    tf = 0.1  # Final time
    direction = 0
    u0_expr = Expression(\
    '100*pow(x[i]-.25,2)*pow(x[i]-0.75,2)*(x[i]<=0.75)*(x[i]>=0.25)', i=direction)

    class LeftRight(SubDomain):
        def inside(self, x, on_boundary):
            return (x[direction] < 1e-16 or x[direction] > 1.0 - 1e-16) \
            and on_boundary

    h = 1. / Nxy
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h / (q * 10.)

    Wave = AcousticWave({'V': V, 'Vl': Vl, 'Vr': Vl})
    Wave.verbose = True
    Wave.lump = True
    Wave.set_abc(mesh, LeftRight())
    Wave.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    sol, tmp = Wave.solve()
コード例 #2
0
def run_test():
    q = 3
    Nxy = 100
    tf = 0.1
    h = 1. / Nxy
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h / (q * 10.)
    u0_expr = Expression(\
    '100*pow(x[i]-.25,2)*pow(x[i]-0.75,2)*(x[i]<=0.75)*(x[i]>=0.25)', i=0)

    Wave = AcousticWave({'V': V, 'Vl': Vl, 'Vr': Vl})
    Wave.lump = True
    Wave.timestepper = 'backward'
    Wave.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    K = Wave.K
    u = Wave.u0
    u.vector()[:] = 1.0
    b = Wave.u1
    for ii in range(100):
        K * u.vector()
        (K * u.vector()).array()

        b.vector()[:] = (K * u.vector()).array()
        b.vector()[:] = 0.0
        b.vector().axpy(1.0, K * u.vector())

        b.vector()[:] = (K * u.vector()).array() + (K * u.vector()).array()
        b.vector()[:] = (K * u.vector() + K * u.vector()).array()

        b.vector()[:] = 2.*u.vector().array() + u.vector().array() + \
        Dt*u.vector().array()
        b.vector()[:] = 0.0
        b.vector().axpy(2.0, u.vector())
        b.vector().axpy(1.0, u.vector())
        b.vector().axpy(Dt, u.vector())
        b.assign(u)
        b.vector().zero()
コード例 #3
0
#Pt = PointSources(V, [[0.1,y_src], [0.25,y_src], [0.4,y_src],\
#[0.6,y_src], [0.75,y_src], [0.9,y_src]])
Pt = PointSources(V, [[0.1, y_src], [0.4, y_src], [0.6, y_src], [0.9, y_src]])
srcv = dl.Function(V).vector()


# Boundary conditions:
class ABCdom(dl.SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary and (x[1] < Y)


Wave = AcousticWave({
    'V': V,
    'Vm': Vl
}, {
    'print': False,
    'lumpM': True,
    'timestepper': 'backward'
})
Wave.set_abc(mesh, ABCdom(), lumpD=False)

at, bt, ct, _, _ = targetmediumparameters(Vl, X)
a0, b0, _, _, _ = initmediumparameters(Vl, X)
Wave.update({'b':bt, 'a':at, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(V), 'utinit':dl.Function(V)})
if PRINT:
    print 'nb of src={}, nb of timesteps={}'.format(len(Pt.src_loc), Wave.Nt)

sources, timesteps = partition_work(mpicomm_local, mpicomm_global, \
len(Pt.src_loc), Wave.Nt)
コード例 #4
0
print 'Compute most accurate solution as reference'
qq = 20
N = int(qq / cmin)
h = 1. / N
mesh = dl.UnitSquareMesh(N, N)
Vl = dl.FunctionSpace(mesh, 'Lagrange', 1)
Vex = dl.FunctionSpace(mesh, 'Lagrange', r)
Pt = PointSources(Vex, [[.5, .5]])
mydelta = Pt[0].array()


def mysrc(tt):
    return Ricker(tt) * mydelta


Waveex = AcousticWave({'V': Vex, 'Vm': Vl})
Waveex.timestepper = 'backward'
Waveex.lump = True
Waveex.update({'a':1.0, 'b':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(Vex), 'utinit':dl.Function(Vex)})
Waveex.ftime = mysrc
sol, _ = Waveex.solve()
Waveex.exact = dl.Function(Vex)
normex = Waveex.computeabserror()
# plot
myplot.set_varname('u-q' + str(qq))
plotu = dl.Function(Vex)
for index, uu in enumerate(sol):
    if index % boolplot == 0:
        setfct(plotu, uu[0])
        myplot.plot_vtk(plotu, index)
コード例 #5
0
    b_target_fn = dl.interpolate(b_target, Vm)
    a_target = dl.Expression(\
    '1.0 + 0.4*(x[0]<=0.7)*(x[0]>=0.3)*(x[1]<=0.7)*(x[1]>=0.3)')
    a_target_fn = dl.interpolate(a_target, Vm)

    checkdt(Dt, 1. / Nxy, r, np.sqrt(2.0), False)

    # observation operator:
    obspts = [[0.0, ii/10.] for ii in range(1,10)] + \
    [[1.0, ii/10.] for ii in range(1,10)] + \
    [[ii/10., 0.0] for ii in range(1,10)] + \
    [[ii/10., 1.0] for ii in range(1,10)]
    obsop = TimeObsPtwise({'V': V, 'Points': obspts}, [t0, t1, t2, tf])

    # define pde operator:
    wavepde = AcousticWave({'V': V, 'Vm': Vm})
    wavepde.timestepper = 'backward'
    wavepde.lump = True
    wavepde.update({'a':a_target_fn, 'b':b_target_fn, \
    't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)})

    # parameters
    Vm = wavepde.Vm
    V = wavepde.V
    lenobspts = obsop.PtwiseObs.nbPts

    # set up plots:
    filename, ext = splitext(sys.argv[0])
    if isdir(filename + '/'): rmtree(filename + '/')
    myplot = PlotFenics(filename + str(Nxy))
    myplot.set_varname('a_target')
コード例 #6
0
class AllFour(SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary


for r in RR:
    V = FunctionSpace(mesh, 'Lagrange', r)
    Pt = PointSources(V, [[.5, .5]])
    mydelta = Pt[0].array()

    def mysrc(tt):
        return Ricker(tt) * mydelta

    # Computation:
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
    Wave = AcousticWave({'V': V, 'Vm': Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, AllFour(), True)
    Wave.exact = Function(V)
    Wave.update({'b':1.0, 'a':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    Wave.ftime = mysrc
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None: MPI.barrier(mycomm)

# Plots:
try:
コード例 #7
0
V = dl.FunctionSpace(mesh, 'Lagrange', r)
y_src = 1.0  # 0.1->transmission, 1.0->reflection
Pt = PointSources(V, [[0.5 * X, y_src]])
mydelta = Pt[0]


def mysrc(tt):
    return mydelta * Ricker(tt)


# Computation:
if mpirank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
Wave = AcousticWave({
    'V': V,
    'Vm': Vl
}, {
    'print': (not mpirank),
    'lumpM': True,
    'timestepper': 'backward'
})
Wave.set_abc(mesh, ABCdom(), lumpD=False)
#Wave.exact = dl.Function(V)
Wave.ftime = mysrc
#
af, bf, _, _, _ = targetmediumparameters(Vl, X, myplot)
#
Wave.update({'b':bf, 'a':af, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(V), 'utinit':dl.Function(V)})

sol, _, _, error = Wave.solve()
if mpirank == 0: print 'relative error = {:.5e}'.format(error)
MPI.barrier(mesh.mpi_comm())
コード例 #8
0
t=tf)


def source(tt):
    return Expression('6*(sqrt(pow(x[0]-0.5,2)+pow(x[1]-0.5,2))<=t)', t=tt)


for Nxy in NN:
    h = 1. / Nxy
    print '\n\th = {}'.format(h)
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    q = 1  # Polynomial order
    V = FunctionSpace(mesh, 'Lagrange', q)
    Dt = h / (q * 5. * c)

    Wave = AcousticWave({'V': V, 'Vl': V, 'Vr': V})
    Wave.timestepper = 'backward'
    Wave.lump = True
    #Wave.verbose = True
    Wave.exact = interpolate(exact_expr, V)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    test = TestFunction(V)

    def srcterm(tt):
        src_expr = source(tt)
        src_vect = assemble(src_expr * test * dx)
        return src_vect.array()

    Wave.ftime = srcterm
    sol, error = Wave.solve()