コード例 #1
0
ファイル: bblocks.py プロジェクト: jlenain/GaRLiC
def calc_bb_unbinned(gta, energies, times, conv, prob, tmin=0., tmax=1e20):
    """
    Calculate unbinned bayesian blocks from a 
    FT1 file with src probabilities

    Parameters
    ----------
    gta: `~fermipy.GTAnalysis` object
        The fermipy analysis object
    energies: `~numpy.ndarray`
        array with photon energies
    times: `~numpy.ndarray`
        array with photon arrival times
    conv: `~numpy.ndarray`
        array with photon conversion types
    prob: `~numpy.ndarray`
        array with photon src probabilities

    {options}

    tmin: float
        mininum time for events in MET
    tmax: float
        maxinum time for events in MET
        
    Returns
    -------
    tuple with bins, times, exposure , src probability, and energies
    """
    from fermiAnalysis import adaptivebinning as ab

    # cut on times
    m = (times >= tmin) & (times < tmax)
    energies = energies[m]
    times = times[m]
    conv = conv[m]
    prob = prob[m]

    # calculate exposure in bins of energy
    EMeVbins = gta.energies
    EMeVbins = np.array([1e2, 1e3])
    EMeVbins = np.logspace(np.log10(energies.min()), np.log10(energies.max()),
                           4)
    EMeV = np.sqrt(EMeVbins[1:] * EMeVbins[:-1])
    EMeV = [500.]

    exp = np.zeros_like(prob)
    for ie, e in enumerate(EMeV):
        me = (energies >= EMeVbins[ie]) & (energies < EMeVbins[ie + 1])

        texp, f, b = ab.comp_exposure_phi(gta, energy=e)
        mt = (texp >= times.min() - 60.) & (texp < times.max() + 60.)
        splinef = interp1d(texp[mt], f[mt], kind='nearest')
        splineb = interp1d(texp[mt], b[mt], kind='nearest')

        mef = me & conv.astype(np.bool) & \
                (times >= texp[mt].min()) & \
                (times <= texp[mt].max())
        meb = me & (~conv.astype(np.bool)) & \
                (times >= texp[mt].min()) & \
                (times <= texp[mt].max())

        exp[meb] = splineb(times[meb]) / b.max()
        exp[mef] = splinef(times[mef]) / f.max()

    if np.sum(exp > 0.):
        logging.info("Calculating unbinned BBs")
        bins = bayesian_blocks(times[exp > 0.], exp=(exp / prob)[exp > 0.])
    else:
        logging.error(
            "Exp > 0. everywhere, selecting one bin over entire time range")
        bins = np.array([times.min(), times.max()])
    return bins, times, exp, prob, energies
コード例 #2
0
def main():
    usage = "usage: %(prog)s -c config.yaml"
    description = "Run the lc analysis"
    parser = argparse.ArgumentParser(usage=usage, description=description)
    parser.add_argument('-c', '--conf', required=True)
    parser.add_argument('-i',
                        required=False,
                        default=0,
                        help='Set local or scratch calculation',
                        type=int)
    parser.add_argument('--state',
                        help='analysis state',
                        choices=['avgspec', 'setup'],
                        default='avgspec')
    parser.add_argument('--forcepl',
                        default=0,
                        help='Force the target source to have power-law shape',
                        type=int)
    parser.add_argument('--createsed',
                        default=0,
                        help='Create SED from best fit model',
                        type=int)
    parser.add_argument(
        '--adaptive',
        default=0,
        help='Use adaptive binning for minute scale light curves',
        type=int)
    parser.add_argument('--srcprob', default = 0,
                        help='Calculate the source probability for the photons,' \
                            ' only works when no sub orbit time scales are used',
                        type=int)
    parser.add_argument(
        '--mincounts',
        default=2,
        help='Minimum number of counts within LC bin to run analysis',
        type=int)
    parser.add_argument('--simulate', default = None,
                        help='None or full path to yaml file which contains src name' \
                        'and spec to be simulated',
                        )
    parser.add_argument(
        '--make_plots',
        default=0,
        type=int,
        help='Create sed plot',
    )
    parser.add_argument(
        '--randomize',
        default=1,
        help=
        'If you simulate, use Poisson realization. If false, use Asimov data set',
        type=int)
    args = parser.parse_args()

    utils.init_logging('DEBUG')
    config = yaml.load(open(args.conf))
    tmpdir, job_id = lsf.init_lsf()
    if not job_id:
        job_id = args.i
    logging.info('tmpdir: {0:s}, job_id: {1:n}'.format(tmpdir, job_id))
    os.chdir(tmpdir)  # go to tmp directory
    logging.info('Entering directory {0:s}'.format(tmpdir))
    logging.info('PWD is {0:s}'.format(os.environ["PWD"]))

    # copy the ft1,ft2 and ltcube files
    #for k in ['evfile','scfile','ltcube']:
    # don't stage them, done automatically by fermipy if needed
    #        config[k] = utils.copy2scratch(config[k], tmpdir)
    # set the scratch directories
    logging.debug(config['data'])
    config['fileio']['scratchdir'] = tmpdir

    # set the log file
    logdir = copy.deepcopy(config['fileio']['logfile'])
    config['fileio']['logfile'] = path.join(tmpdir, 'fermipy.log')
    # debugging: all files will be saved (default is False)
    #config['fileio']['savefits'] = True

    # if simulating an orbit, save fits files
    if args.simulate is not None:
        config['fileio']['savefits'] = True

    # copy all fits files already present in outdir
    # run the analysis
    lc_config = copy.deepcopy(config['lightcurve'])
    fit_config = copy.deepcopy(config['fit_pars'])

    # remove parameters from config file not accepted by fermipy
    for k in ['configname', 'tmp', 'log', 'fit_pars']:
        config.pop(k, None)
    if 'adaptive' in config['lightcurve'].keys():
        config['lightcurve'].pop('adaptive', None)

    # set the correct time bin
    config['selection']['tmin'], config['selection']['tmax'], nj = set_lc_bin(
        config['selection']['tmin'],
        config['selection']['tmax'],
        config['lightcurve']['binsz'],
        job_id - 1 if job_id > 0 else 0,
        ft1=config['data']['evfile'])
    logging.debug('setting light curve bin' + \
        '{0:n}, between {1[tmin]:.0f} and {1[tmax]:.0f}'.format(job_id, config['selection']))
    if args.adaptive:
        config['fileio']['outdir'] = utils.mkdir(
            path.join(config['fileio']['outdir'],
                      'adaptive{0:.0f}/'.format(lc_config['adaptive'])))

    if args.state == 'setup':
        config['fileio']['outdir'] = utils.mkdir(
            path.join(config['fileio']['outdir'],
                      'setup{0:05n}/'.format(job_id if job_id > 0 else 1)))
    else:
        config['fileio']['outdir'] = utils.mkdir(
            path.join(config['fileio']['outdir'],
                      '{0:05n}/'.format(job_id if job_id > 0 else 1)))

    logging.info('Starting with fermipy analysis')
    logging.info('using fermipy version {0:s}'.format(fermipy.__version__))
    logging.info('located at {0:s}'.format(fermipy.__file__))

    if config['data']['ltcube'] == '':
        config['data'].pop('ltcube', None)

    compute_sub_gti_lc = False
    if type(config['lightcurve']['binsz']) == str:
        if len(config['lightcurve']['binsz'].strip('gti')):
            compute_sub_gti_lc = True
            if config['lightcurve']['binsz'].find('min') > 0:
                config['lightcurve']['binsz'] = float(
                    config['lightcurve']['binsz'].strip('gti').strip(
                        'min')) * 60.
                logging.info("set time bin length to {0:.2f}s".format(
                    config['lightcurve']['binsz']))
        else:
            config['lightcurve']['binsz'] = 3. * 3600.
    try:
        gta = GTAnalysis(config, logging={'verbosity': 3})
    except Exception as e:
        logging.error("{0}".format(e))
        config['selection']['target'] = None
        gta = GTAnalysis(config, logging={'verbosity': 3})
        sep = gta.roi.sources[0]['offset']
        logging.warning(
            "Source closets to ROI center is {0:.3f} degree away".format(sep))
        if sep < 0.1:
            config['selection']['target'] = gta.roi.sources[0]['name']
            gta.config['selection']['target'] = config['selection']['target']
            logging.info("Set target to {0:s}".format(
                config['selection']['target']))

    # stage the full time array analysis results to the tmp dir
    # do not copy png images
    files = [
        fn for fn in glob(fit_config['avgspec'])
        if fn.find('.xml') > 0 or fn.find('.npy') > 0
    ]
    files += [config['data']['evfile']]
    utils.copy2scratch(files, gta.workdir)

    # we're using actual data
    if args.simulate is None:
        # check before the analysis start if there are any events in the master file
        # in the specified time range
        logging.info('Checking for events in initial ft1 file')
        t = Table.read(path.join(gta.workdir,
                                 path.basename(config['data']['evfile'])),
                       hdu='EVENTS')
        logging.info("times in base ft1: {0} {1} {2}".format(
            t["TIME"].max(), t["TIME"].min(),
            t["TIME"].max() - t["TIME"].min()))
        m = (t["TIME"] >= config['selection']['tmin']) & (
            t["TIME"] <= config['selection']['tmax'])
        if np.sum(m) < args.mincounts + 1:
            logging.error(
                "*** Only {0:n} events between tmin and tmax! Exiting".format(
                    np.sum(m)))
            assert np.sum(m) > args.mincounts
        else:
            logging.info("{0:n} events between tmin and tmax".format(
                np.sum(m)))

        # check how many bins are in each potential light curve bin
        if compute_sub_gti_lc:
            # select time of first and last
            # photon instead of GTI time
            m = (t["TIME"] >= config['selection']['tmin']) & \
                 (t["TIME"] <= config['selection']['tmax'])

            tmin = t["TIME"][m].min() - 1.
            tmax = t["TIME"][m].max() + 1.
            logging.info("There will be up to {0:n} time bins".format(np.ceil(
                (tmax - tmin) / \
                config['lightcurve']['binsz'])))

            bins = np.arange(tmin, tmax, config['lightcurve']['binsz'])
            bins = np.concatenate([bins, [config['selection']['tmax']]])
            counts = calc_counts(t, bins)
            # remove the starting times of the bins with zero counts
            # and rebin the data
            logging.info("Counts before rebinning: {0}".format(counts))
            mincounts = 10.
            mc = counts < mincounts
            if np.sum(mc):
                # remove trailing zeros
                if np.any(counts == 0.):
                    mcounts_post, mcounts_pre = rm_trailing_zeros(counts)
                    counts = counts[mcounts_post & mcounts_pre]
                    bins = np.concatenate([
                        bins[:-1][mcounts_post & mcounts_pre],
                        [bins[1:][mcounts_post & mcounts_pre].max()]
                    ])
                bins = rebin(counts, bins)
                logging.info("Bin lengths after rebinning: {0}".format(
                    np.diff(bins)))
                logging.info("Bin times after rebinning: {0}".format(bins))
                counts = calc_counts(t, bins)
                logging.info("Counts after rebinning: {0}".format(counts))
            else:
                logging.info("Regular time binning will be used")
            bins = list(bins)

    logging.info('Running fermipy setup')
    try:
        gta.setup()
    except (RuntimeError, IndexError) as e:
        logging.error(
            'Caught Runtime/Index Error while initializing analysis object')
        logging.error('Printing error:')
        logging.error(e)
        if e.message.find("File not found") >= 0 and e.message.find(
                'srcmap') >= 0:
            logging.error("*** Srcmap calculation failed ***")
        if e.message.find("NDSKEYS") >= 0 and e.message.find('srcmap') >= 0:
            logging.error(
                "*** Srcmap calculation failed with NDSKEYS keyword not found in header ***"
            )

        logging.info("Checking if there are events in ft1 file")
        ft1 = path.join(gta.workdir, 'ft1_00.fits')
        f = glob(ft1)
        if not len(f):
            logging.error(
                "*** no ft1 file found at location {0:s}".format(ft1))
            raise
        t = Table.read(f[0], hdu='EVENTS')
        if not len(t):
            logging.error("*** The ft1 file contains no events!! ***".format(
                len(t)))
        else:
            logging.info("The ft1 file contains {0:n} event(s)".format(len(t)))
        return

    # end here if you only want to calulate
    # intermediate fits files
    if args.state == 'setup':
        return gta

    logging.info('Loading the fit for the average spectrum')
    gta.load_roi('avgspec')  # reload the average spectral fit
    logging.info('Running fermipy optimize and fit')

    # we're using actual data
    if args.simulate is None:
        if args.forcepl:
            gta = set_src_spec_pl(
                gta, gta.get_source_name(config['selection']['target']))
# to do add EBL absorption at some stage ...
#        gta = add_ebl_atten(gta, gta.get_source_name(config['selection']['target']), fit_config['z'])

# make sure you are fitting data
        gta.simulate_roi(restore=True)

        if compute_sub_gti_lc:
            if args.adaptive:
                # do import only here since root must be compiled
                from fermiAnalysis import adaptivebinning as ab
                # compute the exposure
                energy = 1000.
                texp, front, back = ab.comp_exposure_phi(gta, energy=1000.)
                # compute the bins
                result = ab.time_bins(
                    gta,
                    texp,
                    0.5 * (front + back),
                    #critval = 20., # bins with ~20% unc
                    critval=lc_config['adaptive'],
                    Epivot=None,  # compute on the fly
                    #                        tstart = config['selection']['tmin'],
                    #                        tstop = config['selection']['tmax']
                )

                # cut the bins to this GTI
                mask = result['tstop'] > config['selection']['tmin']
                mask = mask & (result['tstart'] < config['selection']['tmax'])

                # try again with catalog values
                if not np.sum(mask):
                    logging.error(
                        "Adaptive bins outside time window, trying catalog values for flux"
                    )
                    result = ab.time_bins(
                        gta,
                        texp,
                        0.5 * (front + back),
                        critval=lc_config['adaptive'],  # bins with ~20% unc
                        Epivot=None,  # compute on the fly
                        forcecatalog=True,
                        #                        tstart = config['selection']['tmin'],
                        #                        tstop = config['selection']['tmax']
                    )

                    # cut the bins to this GTI
                    mask = result['tstop'] > config['selection']['tmin']
                    mask = mask & (result['tstart'] <
                                   config['selection']['tmax'])
                    if not np.sum(mask):
                        logging.error(
                            "Adaptive bins do not cover selected time interval!"
                        )
                        logging.error("Using original bins")

                    else:
                        bins = np.concatenate((result['tstart'][mask],
                                               [result['tstop'][mask][-1]]))
                        bins[0] = np.max(
                            [config['selection']['tmin'], bins[0]])
                        bins[-1] = np.min(
                            [config['selection']['tmax'], bins[-1]])
                        bins = list(bins)

                        # removing trailing zeros
                        counts = calc_counts(t, bins)
                        mcounts_post, mcounts_pre = rm_trailing_zeros(counts)
                        logging.info(
                            "count masks: {0} {1}, bins: {2}, counts: {3}".
                            format(mcounts_post, mcounts_pre, bins, counts))
                        counts = counts[mcounts_post & mcounts_pre]
                        bins = np.concatenate([
                            np.array(bins)[:-1][mcounts_post & mcounts_pre],
                            [
                                np.array(bins)[1:][mcounts_post
                                                   & mcounts_pre].max()
                            ]
                        ])
                        logging.info(
                            "Using bins {0}, total n={1:n} bins".format(
                                bins,
                                len(bins) - 1))
                        logging.info("bins widths : {0}".format(np.diff(bins)))
                        logging.info("counts per bin: {0} ".format(
                            calc_counts(t, bins)))
                        bins = list(bins)


# TODO: test that this is working also with GTIs that have little or no counts

            lc = gta.lightcurve(
                config['selection']['target'],
                binsz=config['lightcurve']['binsz'],
                free_background=config['lightcurve']['free_background'],
                free_params=config['lightcurve']['free_params'],
                free_radius=config['lightcurve']['free_radius'],
                make_plots=False,
                multithread=True,
                nthread=4,
                #multithread = False,
                #nthread = 1,
                save_bin_data=True,
                shape_ts_threshold=16.,
                use_scaled_srcmap=True,
                use_local_ltcube=True,
                write_fits=True,
                write_npy=True,
                time_bins=bins,
                outdir='{0:.0f}s'.format(config['lightcurve']['binsz']))
        else:
            # run the fitting of the entire time and energy range
            try:
                o = gta.optimize()  # perform an initial fit
                logging.debug(o)
            except RuntimeError as e:
                logging.error("Error in optimize: {0}".format(e))
                logging.info("Trying to continue ...")

            gta = set_free_pars_lc(gta, config, fit_config)

            f = gta.fit()

            if 'fix_sources' in fit_config.keys():
                skip = fit_config['fix_sources'].keys()
            else:
                skip = []

            gta, f = refit(gta,
                           config['selection']['target'],
                           f,
                           fit_config['ts_fixed'],
                           skip=skip)
            gta.print_roi()
            gta.write_roi('lc')

            if args.createsed:
                if args.make_plots:
                    init_matplotlib_backend()
                gta.load_roi('lc')  # reload the average spectral fit
                logging.info('Running sed for {0[target]:s}'.format(
                    config['selection']))
                sed = gta.sed(config['selection']['target'],
                            prefix = 'lc_sed',
                            free_radius = None if config['sed']['free_radius'] == 0. \
                                else config['sed']['free_radius'],
                            free_background= config['sed']['free_background'],
                            free_pars = fa.allnorm,
                            make_plots = args.make_plots,
                            cov_scale = config['sed']['cov_scale'],
                            use_local_index = config['sed']['use_local_index'],
                            bin_index = config['sed']['bin_index']
                            )

        # debugging: calculate sed and resid maps for each light curve bin
        #logging.info('Running sed for {0[target]:s}'.format(config['selection']))
        #sed = gta.sed(config['selection']['target'], prefix = 'lc')
        #model = {'Scale': 1000., 'Index' : fit_config['new_src_pl_index'], 'SpatialModel' : 'PointSource'}
        #resid_maps = gta.residmap('lc',model=model, make_plots=True, write_fits = True, write_npy = True)

            if args.srcprob:
                logging.info("Running srcprob with srcmdl {0:s}".format('lc'))
                gta.compute_srcprob(xmlfile='lc', overwrite=True)

    # we are simulating a source
    else:
        # TODO: I probably have to run the setup here. Do on weekly files, i.e., no time cut? Only do that later?

        with open(args.simulate) as f:
            simsource = np.load(f, allow_pickle=True).flat[0]

        # set the source to the simulation value
        gta.set_source_spectrum(
            simsource['target'],
            spectrum_type=simsource['spectrum_type'],
            spectrum_pars=simsource['spectrum_pars'][job_id - 1])

        logging.info("changed spectral parameters to {0}".format(
            gta.roi.get_source_by_name(simsource['target']).spectral_pars))

        # simulate the ROI
        gta.simulate_roi(randomize=bool(args.randomize))
        gta = set_free_pars_lc(gta, config, fit_config)

        # fit the simulation
        f = gta.fit()
        gta, f = refit(gta, config['selection']['target'], f,
                       fit_config['ts_fixed'])
        gta.print_roi()
        gta.write_roi('lc_simulate_{0:s}'.format(simsource['suffix']))
    return gta
コード例 #3
0
                #except Exception as e:
                #    logging.error("{0}".format(e))
                #    config['selection']['target'] = None
                #    gta = GTAnalysis(config,logging={'verbosity' : 3})
                sep = gta.roi.sources[0]['offset'] 
                print (config['selection']['target']) 
                #    logging.warning("Source closets to ROI center is {0:.3f} degree away".format(sep))
                #    if sep < 0.1:
                #        config['selection']['target'] = gta.roi.sources[0]['name']
                #        gta.config['selection']['target'] = config['selection']['target']
                #        logging.info("Set target to {0:s}".format(config['selection']['target']))

                #logging.info("Calculating exposure for {0:.1f} MeV".format(energy))
                front, back = [],[]
                for energy in earray:
                    texp, f, b = ab.comp_exposure_phi(gta, energy = energy)
                    front.append(f)
                    back.append(f)

                front = np.array(front)
                back = np.array(back)
                np.savez(texp_file, texp = texp, front = front,
                    back = back, earray = earray)
                logging.info("Saved exposure to {0:s}".format(texp_file))
# read in likelihood vs norm / flux 
# convert to alp coupling using the generate script 
# plot the color bars for each time bin, check the SED plotting script

            outpath = path.join(snconfig['outbase'],s, args.snmodel, 'products')

            walkerfile = path.join(outpath, 'walkers.json')