def printSampleDataFrame(ticker): start_date="2009-01-01" end_date="2009-01-03" options={'qtype':'adjclose', 'tables':['intStocks','itradingDays']} tickerDataRaw=getRawData(ticker,start_date,end_date,options) print(tickerDataRaw.head()) #print("\n Size => " + tickerDataRaw.size) for idx, row in tickerDataRaw.iteritems(): print(idx)
def printFeatureData(ticker): options = {'qtype':'adjclose', 'tables':["intStocks","itradingDays"], 'freq':0, # The frequency of trading, daily=0, monthly=1,weekly=2 'offset':1, # The offset if the period > 1day, ie which trading day in the month/week the strategy will be executed 'pure':0, # from here we have the features , the returns as is 'cal':1, # Calendar features 'history':0, # last 3 periods returns 'momentum':1, # momentum features 'jump':0, # jump features 'value':0, # long term reversal features 'prevWeeks':1,# Now by turning this to 1 we can run a model which includes previous weeks 'algo':KNeighborsRegressor, 'algo_params':{'n_neighbors':5} } supportTickers= None # [("BANKNIFTY",{'pure':0,'momentum':1,'jump':0,'prevWeeks':0})] trainStart="2006-06-01" #testPeriod=["2013-06-01","2016-04-01"] testPeriod=["2017-05-01", "2017-05-22",] start_date = "2017-05-01" end_date = "2017-05-22" algo = options['algo'] algo_params = options['algo_params'] buffer = 0 tickerDataRaw = getRawData(ticker, start_date, end_date, options, buffer) tickerDataRaw["Return"] = getReturn(tickerDataRaw["Price"]) print() printTickerDataFrame(tickerDataRaw) testData = getFeatures(ticker, testPeriod[0], testPeriod[1], options, supportTickers)[0] print(testData.head()) pure = tickerDataRaw["Price"][1:] pureIndex = tickerDataRaw.index[0:-1] pure.index = pureIndex print("pure => " + str(pure.tolist())) print("pureIndex => " + str(pureIndex.tolist())) print(pure.head(2)) print(pure.tail(2)) print("testData count => " + str(len(testData.index))) print("Done") return testData
import plotly.plotly as py import plotly.graph_objs as go import pandas_datareader.data as web from datetime import datetime from fetchData import getRawData #df = web.DataReader("^vix", 'yahoo', datetime(2007, 10, 1), datetime(2009, 4, 1)) ticker, start_date, end_date = "VIX", datetime(2007, 10, 1), datetime(2009, 4, 1) df = getRawData(ticker, start_date, end_date) print(df.head()) trace = go.Candlestick(x=df.index, open=df.Open, high=df.High, low=df.Low, close=df.AdjClose) data = [trace] py.iplot(data, filename='simple_candlestick')
ticker = "NIFTY" start_date = "2009-01-01" end_date = "2010-01-01" options = {'qtype': 'close', 'tables': ['cm_adjPrice', 'tradingDays']} from fetchData import getRawData tickerDataRaw = getRawData(ticker, start_date, end_date, options) print tickerDataRaw.head()
ticker = "AAPL" start_date="2015-01-01" END_date="2017-02-17" options={ 'qtype':'close', 'tables':['adjPrice','tradingdate'] } from fetchData import getRawData ticketDataRaw=getRawData(ticker,start_date,end_date,options) print(ticketDataRaw.head())