コード例 #1
0
def get_paragraph_forward_pair(tag,
                               ruleterm_doc_results,
                               is_training,
                               debug=False,
                               ignore_non_verifiable=False):
    if tag == 'dev':
        d_list = common.load_jsonl(config.FEVER_DEV)
    elif tag == 'train':
        d_list = common.load_jsonl(config.FEVER_TRAIN)
    elif tag == 'test':
        d_list = common.load_jsonl(config.FEVER_TEST)
    else:
        raise ValueError(f"Tag:{tag} not supported.")

    if debug:
        d_list = d_list[:100]
        ruleterm_doc_results = ruleterm_doc_results[:100]

    ruleterm_doc_results_dict = list_dict_data_tool.list_to_dict(
        ruleterm_doc_results, 'id')
    db_cursor = fever_db.get_cursor()
    fitems = build_full_wiki_document_forward_item(ruleterm_doc_results_dict,
                                                   d_list, is_training,
                                                   db_cursor,
                                                   ignore_non_verifiable)

    return fitems
コード例 #2
0
def get_sentences(tag, is_training, debug=False):
    if tag == 'dev':
        d_list = common.load_jsonl(config.FEVER_DEV)
    elif tag == 'train':
        d_list = common.load_jsonl(config.FEVER_TRAIN)
    elif tag == 'test':
        d_list = common.load_jsonl(config.FEVER_TEST)
    else:
        raise ValueError(f"Tag:{tag} not supported.")

    if debug:
        # d_list = d_list[:10]
        d_list = d_list[:50]
        # d_list = d_list[:200]

    doc_results = common.load_jsonl(
        config.RESULT_PATH /
        f"doc_retri_results/fever_results/merged_doc_results/m_doc_{tag}.jsonl"
    )
    doc_results_dict = list_dict_data_tool.list_to_dict(doc_results, 'id')
    fever_db_cursor = fever_db.get_cursor(config.FEVER_DB)
    forward_items = build_full_wiki_document_forward_item(
        doc_results_dict,
        d_list,
        is_training=is_training,
        db_cursor=fever_db_cursor)
    return forward_items
コード例 #3
0
def get_inference_pair(tag,
                       is_training,
                       sent_result_path,
                       debug_num=None,
                       evidence_filtering_threshold=0.01):
    # sent_result_path = ""

    if tag == 'dev':
        d_list = common.load_jsonl(config.FEVER_DEV)
    elif tag == 'train':
        d_list = common.load_jsonl(config.FEVER_TRAIN)
    elif tag == 'test':
        d_list = common.load_jsonl(config.FEVER_TEST)
    else:
        raise ValueError(f"Tag:{tag} not supported.")

    if debug_num is not None:
        # d_list = d_list[:10]
        d_list = d_list[:50]
        # d_list = d_list[:200]

    d_dict = list_dict_data_tool.list_to_dict(d_list, 'id')

    threshold_value = evidence_filtering_threshold
    # sent_list = common.load_jsonl(
    #     config.RESULT_PATH / "doc_retri_results/fever_results/sent_results/4-14-sent_results_v0/train_sent_results.jsonl")
    # sent_list = common.load_jsonl(
    #     config.RESULT_PATH / "doc_retri_results/fever_results/sent_results/4-14-sent_results_v0/i(5000)|e(0)|s01(0.9170917091709171)|s05(0.8842384238423843)|seed(12)_dev_sent_results.json")

    # debug_num = None if not debug else 2971
    # debug_num = None

    if isinstance(sent_result_path, Path):
        sent_list = common.load_jsonl(sent_result_path, debug_num)
    elif isinstance(sent_result_path, list):
        sent_list = sent_result_path
    else:
        raise ValueError(
            f"{sent_result_path} is not of a valid argument type which should be [list, Path]."
        )

    list_dict_data_tool.append_subfield_from_list_to_dict(sent_list,
                                                          d_dict,
                                                          'oid',
                                                          'fid',
                                                          check=True)

    filltered_sent_dict = select_top_k_and_to_results_dict(
        d_dict, top_k=5, threshold=threshold_value)

    list_dict_data_tool.append_item_from_dict_to_list(
        d_list, filltered_sent_dict, 'id',
        ['predicted_evidence', 'predicted_scored_evidence'])
    fever_db_cursor = fever_db.get_cursor(config.FEVER_DB)
    forward_items = build_nli_forward_item(d_list,
                                           is_training=is_training,
                                           db_cursor=fever_db_cursor)

    return forward_items, d_list
コード例 #4
0
def get_nli_pair(tag,
                 is_training,
                 sent_level_results_list,
                 debug=None,
                 sent_top_k=5,
                 sent_filter_value=0.05):
    if tag == 'dev':
        d_list = common.load_jsonl(config.FEVER_DEV)
    elif tag == 'train':
        d_list = common.load_jsonl(config.FEVER_TRAIN)
    elif tag == 'test':
        d_list = common.load_jsonl(config.FEVER_TEST)
    else:
        raise ValueError(f"Tag:{tag} not supported.")

    if debug:
        d_list = d_list[:100]
        # sent_dict = list_dict_data_tool.list_to_dict(sent_level_results_list):

    d_dict = list_dict_data_tool.list_to_dict(d_list, 'id')

    if debug:
        id_set = set([item['id'] for item in d_list])
        new_sent_list = []
        for item in sent_level_results_list:
            if item["qid"] in id_set:
                new_sent_list.append(item)
        sent_level_results_list = new_sent_list

    list_dict_data_tool.append_subfield_from_list_to_dict(
        sent_level_results_list, d_dict, 'qid', 'fid', check=True)

    filltered_sent_dict = select_top_k_and_to_results_dict(
        d_dict,
        score_field_name='prob',
        top_k=sent_top_k,
        filter_value=sent_filter_value,
        result_field='predicted_evidence')

    list_dict_data_tool.append_item_from_dict_to_list_hotpot_style(
        d_list, filltered_sent_dict, 'id',
        ['predicted_evidence', 'selected_scored_results'])

    fever_db_cursor = fever_db.get_cursor(config.FEVER_DB)
    forward_items = build_nli_forward_item(d_list,
                                           is_training=is_training,
                                           db_cursor=fever_db_cursor)

    return forward_items, d_list
コード例 #5
0
def get_sentence_forward_pair(tag,
                              ruleterm_doc_results,
                              is_training,
                              debug=False,
                              ignore_non_verifiable=False,
                              top_k=5,
                              filter_value=0.005):
    if tag == 'dev':
        d_list = common.load_jsonl(config.FEVER_DEV)
    elif tag == 'train':
        d_list = common.load_jsonl(config.FEVER_TRAIN)
    elif tag == 'test':
        d_list = common.load_jsonl(config.FEVER_TEST)
    else:
        raise ValueError(f"Tag:{tag} not supported.")

    if debug:
        d_list = d_list[:100]
        ruleterm_doc_results = ruleterm_doc_results[:100]

    # ruleterm_doc_results_dict = list_dict_data_tool.list_to_dict(ruleterm_doc_results, 'id')
    d_o_dict = list_dict_data_tool.list_to_dict(d_list, 'id')
    copied_d_o_dict = copy.deepcopy(d_o_dict)
    # copied_d_list = copy.deepcopy(d_list)
    list_dict_data_tool.append_subfield_from_list_to_dict(ruleterm_doc_results,
                                                          copied_d_o_dict,
                                                          'qid',
                                                          'fid',
                                                          check=True)

    cur_results_dict_filtered = select_top_k_and_to_results_dict(
        copied_d_o_dict,
        score_field_name='prob',
        top_k=top_k,
        filter_value=filter_value)

    db_cursor = fever_db.get_cursor()
    fitems = build_full_wiki_sentence_forward_item(cur_results_dict_filtered,
                                                   d_list, is_training,
                                                   db_cursor,
                                                   ignore_non_verifiable)

    return fitems
コード例 #6
0
ファイル: ss_sampler.py プロジェクト: tushar117/multihopQA
    random.shuffle(pos_items)
    random.shuffle(neg_items)
    neg_sample_count = int(pos_count / ratio)

    sampled_neg = neg_items[:neg_sample_count]

    print(f"After Sampling, we have {pos_count}/{len(sampled_neg)} (pos/neg).")

    sampled_list = sampled_neg + pos_items
    random.shuffle(sampled_list)

    return sampled_list


if __name__ == '__main__':
    d_list = common.load_jsonl(config.FEVER_DEV)
    doc_results = common.load_jsonl(
        config.RESULT_PATH /
        "doc_retri_results/fever_results/merged_doc_results/m_doc_dev.jsonl")
    doc_results_dict = list_dict_data_tool.list_to_dict(doc_results, 'id')
    fever_db_cursor = fever_db.get_cursor(config.FEVER_DB)
    forward_items = build_full_wiki_document_forward_item(
        doc_results_dict, d_list, is_training=False, db_cursor=fever_db_cursor)
    # print(forward_items)

    # for item in forward_items:
    # if item['s_labels'] == 'true':
    # print(item['query'], item['context'], item['sid'], item['cid'], item['fid'], item['s_labels'])

    print(len(forward_items))
    # down_sample_neg(forward_items, ratio=0.2)
コード例 #7
0
ファイル: nli_sampler.py プロジェクト: tushar117/multihopQA
def adv_simi_sample_with_prob_v1_1(input_file,
                                   additional_file,
                                   prob_dict_file,
                                   tokenized=False):
    cursor = fever_db.get_cursor()
    d_list = common.load_jsonl(input_file)

    if prob_dict_file is None:
        prob_dict_file = dict()

    if isinstance(additional_file, list):
        additional_d_list = additional_file
    else:
        additional_d_list = common.load_jsonl(additional_file)
    additional_data_dict = dict()

    for add_item in additional_d_list:
        additional_data_dict[add_item['id']] = add_item

    sampled_data_list = []
    count = 0

    for item in tqdm(d_list):
        # e_list = check_sentences.check_and_clean_evidence(item)
        sampled_e_list, flags = sample_additional_data_for_item_v1_1(
            item, additional_data_dict)
        # print(flags)
        for i, (sampled_evidence,
                flag) in enumerate(zip(sampled_e_list, flags)):
            # Do not copy, might change in the future for error analysis
            # new_item = copy.deepcopy(item)
            new_item = dict()
            # print(new_item['claim'])
            # print(e_list)
            # print(sampled_evidence)
            # print(flag)
            evidence_text_list = evidence_list_to_text_list(
                cursor,
                sampled_evidence,
                contain_head=True,
                id_tokenized=tokenized)

            evidences = sorted(sampled_evidence, key=lambda x: (x[0], x[1]))
            item_id = int(item['id'])

            evidence_text_list_with_prob = []
            for text, (doc_id, ln) in zip(evidence_text_list, evidences):
                ssid = (int(item_id), doc_id, int(ln))
                if ssid not in prob_dict_file:
                    count += 1
                    # print("Some sentence pair don't have 'prob'.")
                    prob = 0.5
                else:
                    prob = prob_dict_file[ssid]['prob']
                    assert item['claim'] == prob_dict_file[ssid]['claim']

                evidence_text_list_with_prob.append((text, prob))

            new_item['id'] = str(item['id']) + '#' + str(i)

            if tokenized:
                new_item['claim'] = item['claim']
            else:
                raise NotImplemented("Non tokenized is not implemented.")
                # new_item['claim'] = ' '.join(easy_tokenize(item['claim']))

            new_item['evid'] = evidence_text_list_with_prob

            new_item['verifiable'] = item['verifiable']
            new_item['label'] = item['label']

            # print("C:", new_item['claim'])
            # print("E:", new_item['evid'])
            # print("L:", new_item['label'])
            # print()
            sampled_data_list.append(new_item)

    cursor.close()

    print(count)
    return sampled_data_list
コード例 #8
0
ファイル: nli_sampler.py プロジェクト: tushar117/multihopQA
def select_sent_with_prob_for_eval(input_file,
                                   additional_file,
                                   prob_dict_file,
                                   tokenized=False,
                                   pipeline=False):
    """
    This method select sentences with upstream sentence retrieval.

    :param input_file: This should be the file with 5 sentences selected.
    :return:
    """
    cursor = fever_db.get_cursor()

    if prob_dict_file is None:
        prob_dict_file = dict()

    if isinstance(additional_file, list):
        additional_d_list = additional_file
    else:
        additional_d_list = common.load_jsonl(additional_file)
    additional_data_dict = dict()

    for add_item in additional_d_list:
        additional_data_dict[add_item['id']] = add_item

    d_list = common.load_jsonl(input_file)

    for item in tqdm(d_list):
        e_list = additional_data_dict[item['id']]['predicted_sentids']
        if not pipeline:
            assert additional_data_dict[item['id']]['label'] == item['label']
            assert additional_data_dict[
                item['id']]['verifiable'] == item['verifiable']
        assert additional_data_dict[item['id']]['id'] == item['id']

        pred_evidence_list = []
        for i, cur_e in enumerate(e_list):
            doc_id = cur_e.split(fever_scorer.SENT_LINE)[0]
            ln = int(cur_e.split(
                fever_scorer.SENT_LINE)[1])  # Important changes Bugs: July 21
            pred_evidence_list.append((doc_id, ln))

        pred_evidence = check_sentences.Evidences(pred_evidence_list)

        evidence_text_list = evidence_list_to_text_list(cursor,
                                                        pred_evidence,
                                                        contain_head=True,
                                                        id_tokenized=tokenized)

        evidences = sorted(pred_evidence, key=lambda x: (x[0], x[1]))
        item_id = int(item['id'])

        evidence_text_list_with_prob = []
        for text, (doc_id, ln) in zip(evidence_text_list, evidences):
            ssid = (item_id, doc_id, int(ln))
            if ssid not in prob_dict_file:
                # print("Some sentence pair don't have 'prob'.")
                prob = 0.5
            else:
                prob = prob_dict_file[ssid]['prob']
                assert item['claim'] == prob_dict_file[ssid]['claim']

            evidence_text_list_with_prob.append((text, prob))

        if tokenized:
            pass
        else:
            raise NotImplemented("Non tokenized is not implemented.")
            # item['claim'] = ' '.join(easy_tokenize(item['claim']))

        item['evid'] = evidence_text_list_with_prob
        item['predicted_evidence'] = convert_evidence2scoring_format(e_list)
        item['predicted_sentids'] = e_list
        # This change need to be saved.
        # item['predicted_label'] = additional_data_dict[item['id']]['label']

    return d_list