コード例 #1
0
    def _define_coordinate_dofs_lincomb(self, e, mt, tabledata,
                                        quadrature_rule, access):
        """Define x or J as a linear combination of coordinate dofs with given table data."""
        L = self.language

        # Get properties of domain
        domain = mt.terminal.ufl_domain()
        gdim = domain.geometric_dimension()
        coordinate_element = domain.ufl_coordinate_element()
        num_scalar_dofs = create_element(coordinate_element).sub_element.dim

        # Reference coordinates are known, no coordinate field, so we compute
        # this component as linear combination of coordinate_dofs "dofs" and table

        # Find table name
        ttype = tabledata.ttype

        assert ttype != "zeros"
        assert ttype != "ones"

        begin = tabledata.offset
        num_dofs = tabledata.values.shape[3]
        bs = tabledata.block_size

        # Inlined version (we know this is bounded by a small number)
        FE = self.symbols.element_table(tabledata, self.entitytype,
                                        mt.restriction)
        dof_access = self.symbols.domain_dofs_access(gdim, num_scalar_dofs,
                                                     mt.restriction)
        value = L.Sum(
            [dof_access[begin + i * bs] * FE[i] for i in range(num_dofs)])
        code = [L.VariableDecl("const double", access, value)]

        return code
コード例 #2
0
ファイル: representation.py プロジェクト: jpdean/ffcx
def _compute_element_ir(ufl_element, element_numbers, finite_element_names):
    """Compute intermediate representation of element."""
    logger.info(f"Computing IR for element {ufl_element}")

    # Create basix elements
    basix_element = create_element(ufl_element)
    cell = ufl_element.cell()
    cellname = cell.cellname()

    # Store id
    ir = {"id": element_numbers[ufl_element]}
    ir["name"] = finite_element_names[ufl_element]

    # Compute data for each function
    ir["signature"] = repr(ufl_element)
    ir["cell_shape"] = cellname
    ir["topological_dimension"] = cell.topological_dimension()
    ir["geometric_dimension"] = cell.geometric_dimension()
    ir["space_dimension"] = basix_element.dim
    ir["element_type"] = basix_element.element_type
    ir["lagrange_variant"] = basix_element.lagrange_variant
    ir["basix_family"] = basix_element.element_family
    ir["basix_cell"] = basix_element.cell_type
    ir["discontinuous"] = basix_element.discontinuous
    ir["degree"] = ufl_element.degree()
    ir["family"] = ufl_element.family()
    ir["value_shape"] = ufl_element.value_shape()
    ir["reference_value_shape"] = ufl_element.reference_value_shape()

    ir["num_sub_elements"] = ufl_element.num_sub_elements()
    ir["sub_elements"] = [finite_element_names[e] for e in ufl_element.sub_elements()]

    if hasattr(basix_element, "block_size"):
        ir["block_size"] = basix_element.block_size
        ufl_element = ufl_element.sub_elements()[0]
        basix_element = create_element(ufl_element)
    else:
        ir["block_size"] = 1

    ir["entity_dofs"] = basix_element.entity_dofs

    return ir_element(**ir)
コード例 #3
0
ファイル: test_elements.py プロジェクト: jpdean/ffcx
    def test_values(self, family, cell, degree, reference):
        # Create element
        element = create_element(FiniteElement(family, cell, degree))

        # Get some points and check basis function values at points
        points = [random_point(element_coords(cell)) for i in range(5)]
        for x in points:
            table = element.tabulate(0, (x,))
            basis = table[0]
            if sum(element.value_shape) == 1:
                for i, value in enumerate(basis[0]):
                    assert numpy.isclose(value, reference[i](x))
            else:
                for i, ref in enumerate(reference):
                    assert numpy.allclose(basis[0][i::len(reference)], ref(x))
コード例 #4
0
    def facet_edge_vectors(self, e, mt, tabledata, num_points):
        L = self.language

        # Get properties of domain
        domain = mt.terminal.ufl_domain()
        cellname = domain.ufl_cell().cellname()
        gdim = domain.geometric_dimension()
        coordinate_element = domain.ufl_coordinate_element()

        if cellname in ("tetrahedron", "hexahedron"):
            pass
        elif cellname in ("interval", "triangle", "quadrilateral"):
            raise RuntimeError(
                f"The physical facet edge vectors doesn't make sense for {cellname} cell.")
        else:
            raise RuntimeError(f"Unhandled cell types {cellname}.")

        # Get dimension and dofmap of scalar element
        assert isinstance(coordinate_element, MixedElement)
        assert coordinate_element.value_shape() == (gdim, )
        ufl_scalar_element, = set(coordinate_element.sub_elements())
        assert ufl_scalar_element.family() in ("Lagrange", "Q", "S")

        basix_scalar_element = create_element(ufl_scalar_element)
        num_scalar_dofs = basix_scalar_element.dim

        # Get edge vertices
        facet = self.symbols.entity("facet", mt.restriction)
        facet_edge = mt.component[0]
        facet_edge_vertices = L.Symbol(f"{cellname}_facet_edge_vertices")
        vertex0 = facet_edge_vertices[facet][facet_edge][0]
        vertex1 = facet_edge_vertices[facet][facet_edge][1]

        # Get dofs and component
        component = mt.component[1]
        assert coordinate_element.degree() == 1, "Assuming degree 1 element"
        dof0 = vertex0
        dof1 = vertex1
        expr = (
            self.symbols.domain_dof_access(dof0, component, gdim, num_scalar_dofs, mt.restriction)
            - self.symbols.domain_dof_access(dof1, component, gdim, num_scalar_dofs, mt.restriction))

        return expr
コード例 #5
0
ファイル: representation.py プロジェクト: jpdean/ffcx
def _compute_dofmap_ir(ufl_element, element_numbers, dofmap_names):
    """Compute intermediate representation of dofmap."""
    logger.info(f"Computing IR for dofmap of {ufl_element}")

    # Create basix elements
    basix_element = create_element(ufl_element)

    # Store id
    ir = {"id": element_numbers[ufl_element]}
    ir["name"] = dofmap_names[ufl_element]

    # Compute data for each function
    ir["signature"] = "FFCx dofmap for " + repr(ufl_element)
    ir["sub_dofmaps"] = [dofmap_names[e] for e in ufl_element.sub_elements()]
    ir["num_sub_dofmaps"] = ufl_element.num_sub_elements()

    if hasattr(basix_element, "block_size"):
        ir["block_size"] = basix_element.block_size
        basix_element = basix_element.sub_element
    else:
        ir["block_size"] = 1

    # Precompute repeatedly used items
    for i in basix_element.num_entity_dofs:
        # FIXME: this assumes the same number of DOFs on each entity of the same dim: this
        # assumption will not be true for prisms and pyramids
        if max(i) != min(i):
            raise RuntimeError("Elements with different numbers of DOFs on subentities of the same dimension"
                               " are not yet supported in FFCx.")

    num_dofs_per_entity = [i[0] for i in basix_element.num_entity_dofs]
    ir["num_entity_dofs"] = num_dofs_per_entity
    ir["tabulate_entity_dofs"] = (basix_element.entity_dofs, num_dofs_per_entity)

    num_dofs_per_entity_closure = [i[0] for i in basix_element.num_entity_closure_dofs]
    ir["num_entity_closure_dofs"] = num_dofs_per_entity_closure
    ir["tabulate_entity_closure_dofs"] = (basix_element.entity_closure_dofs, num_dofs_per_entity_closure)

    ir["num_global_support_dofs"] = basix_element.num_global_support_dofs
    ir["num_element_support_dofs"] = basix_element.dim - ir["num_global_support_dofs"]

    return ir_dofmap(**ir)
コード例 #6
0
    def cell_vertices(self, e, mt, tabledata, num_points):
        # Get properties of domain
        domain = mt.terminal.ufl_domain()
        gdim = domain.geometric_dimension()
        coordinate_element = domain.ufl_coordinate_element()

        # Get dimension and dofmap of scalar element
        assert isinstance(coordinate_element, MixedElement)
        assert coordinate_element.value_shape() == (gdim, )
        ufl_scalar_element, = set(coordinate_element.sub_elements())
        assert ufl_scalar_element.family() in ("Lagrange", "Q", "S")

        basix_scalar_element = create_element(ufl_scalar_element)
        vertex_scalar_dofs = basix_scalar_element.entity_dofs[0]
        num_scalar_dofs = basix_scalar_element.dim

        # Get dof and component
        dof, = vertex_scalar_dofs[mt.component[0]]
        component = mt.component[1]

        expr = self.symbols.domain_dof_access(dof, component, gdim, num_scalar_dofs, mt.restriction)
        return expr
コード例 #7
0
    def cell_edge_vectors(self, e, mt, tabledata, num_points):
        # Get properties of domain
        domain = mt.terminal.ufl_domain()
        cellname = domain.ufl_cell().cellname()
        gdim = domain.geometric_dimension()
        coordinate_element = domain.ufl_coordinate_element()

        if cellname in ("triangle", "tetrahedron", "quadrilateral", "hexahedron"):
            pass
        elif cellname == "interval":
            raise RuntimeError("The physical cell edge vectors doesn't make sense for interval cell.")
        else:
            raise RuntimeError(f"Unhandled cell types {cellname}.")

        # Get dimension and dofmap of scalar element
        assert isinstance(coordinate_element, MixedElement)
        assert coordinate_element.value_shape() == (gdim, )
        ufl_scalar_element, = set(coordinate_element.sub_elements())
        assert ufl_scalar_element.family() in ("Lagrange", "Q", "S")

        basix_scalar_element = create_element(ufl_scalar_element)
        vertex_scalar_dofs = basix_scalar_element.entity_dofs[0]
        num_scalar_dofs = basix_scalar_element.dim

        # Get edge vertices
        edge = mt.component[0]
        vertex0, vertex1 = basix_scalar_element.reference_topology[1][edge]

        # Get dofs and component
        dof0, = vertex_scalar_dofs[vertex0]
        dof1, = vertex_scalar_dofs[vertex1]
        component = mt.component[1]

        return self.symbols.domain_dof_access(
            dof0, component, gdim, num_scalar_dofs, mt.restriction
        ) - self.symbols.domain_dof_access(
            dof1, component, gdim, num_scalar_dofs, mt.restriction
        )
コード例 #8
0
ファイル: representation.py プロジェクト: jpdean/ffcx
def _compute_expression_ir(expression, index, prefix, analysis, parameters, visualise):
    """Compute intermediate representation of expression."""
    logger.info(f"Computing IR for expression {index}")

    # Compute representation
    ir = {}

    original_expression = (expression[2], expression[1])

    ir["name"] = naming.expression_name(original_expression, prefix)

    original_expression = expression[2]
    points = expression[1]
    expression = expression[0]

    try:
        cell = expression.ufl_domain().ufl_cell()
    except AttributeError:
        # This case corresponds to a spatially constant expression
        # without any dependencies
        cell = None

    # Prepare dimensions of all unique element in expression, including
    # elements for arguments, coefficients and coordinate mappings
    ir["element_dimensions"] = {
        ufl_element: create_element(ufl_element).dim
        for ufl_element in analysis.unique_elements
    }

    # Extract dimensions for elements of arguments only
    arguments = ufl.algorithms.extract_arguments(expression)
    argument_elements = tuple(f.ufl_element() for f in arguments)
    argument_dimensions = [
        ir["element_dimensions"][ufl_element] for ufl_element in argument_elements
    ]

    tensor_shape = argument_dimensions
    ir["tensor_shape"] = tensor_shape

    ir["expression_shape"] = list(expression.ufl_shape)

    coefficients = ufl.algorithms.extract_coefficients(expression)
    coefficient_numbering = {}
    for i, coeff in enumerate(coefficients):
        coefficient_numbering[coeff] = i

    # Add coefficient numbering to IR
    ir["coefficient_numbering"] = coefficient_numbering

    original_coefficient_positions = []
    original_coefficients = ufl.algorithms.extract_coefficients(original_expression)
    for coeff in coefficients:
        original_coefficient_positions.append(original_coefficients.index(coeff))

    ir["original_coefficient_positions"] = original_coefficient_positions

    coefficient_elements = tuple(f.ufl_element() for f in coefficients)

    offsets = {}
    _offset = 0
    for i, el in enumerate(coefficient_elements):
        offsets[coefficients[i]] = _offset
        _offset += ir["element_dimensions"][el]

    # Copy offsets also into IR
    ir["coefficient_offsets"] = offsets

    ir["integral_type"] = "expression"
    ir["entitytype"] = "cell"

    # Build offsets for Constants
    original_constant_offsets = {}
    _offset = 0
    for constant in ufl.algorithms.analysis.extract_constants(expression):
        original_constant_offsets[constant] = _offset
        _offset += numpy.product(constant.ufl_shape, dtype=int)

    ir["original_constant_offsets"] = original_constant_offsets

    ir["points"] = points

    weights = numpy.array([1.0] * points.shape[0])
    rule = QuadratureRule(points, weights)
    integrands = {rule: expression}

    if cell is None:
        assert len(ir["original_coefficient_positions"]) == 0 and len(ir["original_constant_offsets"]) == 0

    expression_ir = compute_integral_ir(cell, ir["integral_type"], ir["entitytype"], integrands, tensor_shape,
                                        parameters, visualise)

    ir.update(expression_ir)

    return ir_expression(**ir)
コード例 #9
0
ファイル: representation.py プロジェクト: jpdean/ffcx
def _compute_integral_ir(form_data, form_index, element_numbers, integral_names,
                         parameters, visualise):
    """Compute intermediate represention for form integrals."""
    _entity_types = {
        "cell": "cell",
        "exterior_facet": "facet",
        "interior_facet": "facet",
        "vertex": "vertex",
        "custom": "cell"
    }

    # Iterate over groups of integrals
    irs = []
    for itg_data_index, itg_data in enumerate(form_data.integral_data):

        logger.info(f"Computing IR for integral in integral group {itg_data_index}")

        # Compute representation
        entitytype = _entity_types[itg_data.integral_type]
        cell = itg_data.domain.ufl_cell()
        cellname = cell.cellname()
        tdim = cell.topological_dimension()
        assert all(tdim == itg.ufl_domain().topological_dimension() for itg in itg_data.integrals)

        ir = {
            "integral_type": itg_data.integral_type,
            "subdomain_id": itg_data.subdomain_id,
            "rank": form_data.rank,
            "geometric_dimension": form_data.geometric_dimension,
            "topological_dimension": tdim,
            "entitytype": entitytype,
            "num_facets": cell.num_facets(),
            "num_vertices": cell.num_vertices(),
            "enabled_coefficients": itg_data.enabled_coefficients,
            "cell_shape": cellname
        }

        # Get element space dimensions
        unique_elements = element_numbers.keys()
        ir["element_dimensions"] = {
            ufl_element: create_element(ufl_element).dim
            for ufl_element in unique_elements
        }

        ir["element_ids"] = {
            ufl_element: i
            for i, ufl_element in enumerate(unique_elements)
        }

        # Create dimensions of primary indices, needed to reset the argument
        # 'A' given to tabulate_tensor() by the assembler.
        argument_dimensions = [
            ir["element_dimensions"][ufl_element] for ufl_element in form_data.argument_elements
        ]

        # Compute shape of element tensor
        if ir["integral_type"] == "interior_facet":
            ir["tensor_shape"] = [2 * dim for dim in argument_dimensions]
        else:
            ir["tensor_shape"] = argument_dimensions

        integral_type = itg_data.integral_type
        cell = itg_data.domain.ufl_cell()

        # Group integrands with the same quadrature rule
        grouped_integrands = {}
        for integral in itg_data.integrals:
            md = integral.metadata() or {}
            scheme = md["quadrature_rule"]
            degree = md["quadrature_degree"]

            if scheme == "custom":
                points = md["quadrature_points"]
                weights = md["quadrature_weights"]
            elif scheme == "vertex":
                # FIXME: Could this come from basix?

                # The vertex scheme, i.e., averaging the function value in the
                # vertices and multiplying with the simplex volume, is only of
                # order 1 and inferior to other generic schemes in terms of
                # error reduction. Equation systems generated with the vertex
                # scheme have some properties that other schemes lack, e.g., the
                # mass matrix is a simple diagonal matrix. This may be
                # prescribed in certain cases.
                if degree > 1:
                    warnings.warn(
                        "Explicitly selected vertex quadrature (degree 1), but requested degree is {}.".
                        format(degree))
                if cellname == "tetrahedron":
                    points, weights = (numpy.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0],
                                                    [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]),
                                       numpy.array([1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0]))
                elif cellname == "triangle":
                    points, weights = (numpy.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]]),
                                       numpy.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0]))
                elif cellname == "interval":
                    # Trapezoidal rule
                    return (numpy.array([[0.0], [1.0]]), numpy.array([1.0 / 2.0, 1.0 / 2.0]))
            else:
                points, weights = create_quadrature_points_and_weights(
                    integral_type, cell, degree, scheme)

            points = numpy.asarray(points)
            weights = numpy.asarray(weights)

            rule = QuadratureRule(points, weights)

            if rule not in grouped_integrands:
                grouped_integrands[rule] = []

            grouped_integrands[rule].append(integral.integrand())

        sorted_integrals = {}
        for rule, integrands in grouped_integrands.items():
            integrands_summed = sorted_expr_sum(integrands)

            integral_new = Integral(integrands_summed, itg_data.integral_type, itg_data.domain,
                                    itg_data.subdomain_id, {}, None)
            sorted_integrals[rule] = integral_new

        # TODO: See if coefficient_numbering can be removed
        # Build coefficient numbering for UFC interface here, to avoid
        # renumbering in UFL and application of replace mapping
        coefficient_numbering = {}
        for i, f in enumerate(form_data.reduced_coefficients):
            coefficient_numbering[f] = i

        # Add coefficient numbering to IR
        ir["coefficient_numbering"] = coefficient_numbering

        index_to_coeff = sorted([(v, k) for k, v in coefficient_numbering.items()])
        offsets = {}
        width = 2 if integral_type in ("interior_facet") else 1
        _offset = 0
        for k, el in zip(index_to_coeff, form_data.coefficient_elements):
            offsets[k[1]] = _offset
            _offset += width * ir["element_dimensions"][el]

        # Copy offsets also into IR
        ir["coefficient_offsets"] = offsets

        # Build offsets for Constants
        original_constant_offsets = {}
        _offset = 0
        for constant in form_data.original_form.constants():
            original_constant_offsets[constant] = _offset
            _offset += numpy.product(constant.ufl_shape, dtype=int)

        ir["original_constant_offsets"] = original_constant_offsets

        ir["precision"] = itg_data.metadata["precision"]

        # Create map from number of quadrature points -> integrand
        integrands = {rule: integral.integrand() for rule, integral in sorted_integrals.items()}

        # Build more specific intermediate representation
        integral_ir = compute_integral_ir(itg_data.domain.ufl_cell(), itg_data.integral_type,
                                          ir["entitytype"], integrands, ir["tensor_shape"],
                                          parameters, visualise)

        ir.update(integral_ir)

        # Fetch name
        ir["name"] = integral_names[(form_index, itg_data_index)]

        irs.append(ir_integral(**ir))

    return irs
コード例 #10
0
def get_ffcx_table_values(points, cell, integral_type, ufl_element, avg, entitytype,
                          derivative_counts, flat_component):
    """Extract values from FFCx element table.

    Returns a 3D numpy array with axes
    (entity number, quadrature point number, dof number)
    """
    deriv_order = sum(derivative_counts)

    if integral_type in ufl.custom_integral_types:
        # Use quadrature points on cell for analysis in custom integral types
        integral_type = "cell"
        assert not avg

    if integral_type == "expression":
        # FFCx tables for expression are generated as interior cell points
        integral_type = "cell"

    if avg in ("cell", "facet"):
        # Redefine points to compute average tables

        # Make sure this is not called with points, that doesn't make sense
        # assert points is None

        # Not expecting derivatives of averages
        assert not any(derivative_counts)
        assert deriv_order == 0

        # Doesn't matter if it's exterior or interior facet integral,
        # just need a valid integral type to create quadrature rule
        if avg == "cell":
            integral_type = "cell"
        elif avg == "facet":
            integral_type = "exterior_facet"

        # Make quadrature rule and get points and weights
        points, weights = create_quadrature_points_and_weights(integral_type, cell,
                                                               ufl_element.degree(), "default")

    # Tabulate table of basis functions and derivatives in points for each entity
    tdim = cell.topological_dimension()
    entity_dim = integral_type_to_entity_dim(integral_type, tdim)
    num_entities = ufl.cell.num_cell_entities[cell.cellname()][entity_dim]

    numpy.set_printoptions(suppress=True, precision=2)
    basix_element = create_element(ufl_element)

    # Extract arrays for the right scalar component
    component_tables = []
    sh = tuple(basix_element.value_shape)
    assert len(sh) > 0
    component_element, offset, stride = basix_element.get_component_element(flat_component)

    for entity in range(num_entities):
        entity_points = map_integral_points(points, integral_type, cell, entity)
        tbl = component_element.tabulate(deriv_order, entity_points)
        tbl = tbl[basix_index(*derivative_counts)]
        component_tables.append(tbl)

    if avg in ("cell", "facet"):
        # Compute numeric integral of the each component table
        wsum = sum(weights)
        for entity, tbl in enumerate(component_tables):
            num_dofs = tbl.shape[1]
            tbl = numpy.dot(tbl, weights) / wsum
            tbl = numpy.reshape(tbl, (1, num_dofs))
            component_tables[entity] = tbl

    # Loop over entities and fill table blockwise (each block = points x dofs)
    # Reorder axes as (points, dofs) instead of (dofs, points)
    assert len(component_tables) == num_entities
    num_points, num_dofs = component_tables[0].shape
    shape = (1, num_entities, num_points, num_dofs)
    res = numpy.zeros(shape)
    for entity in range(num_entities):
        res[:, entity, :, :] = component_tables[entity]

    return {'array': res, 'offset': offset, 'stride': stride}
コード例 #11
0
def build_optimized_tables(
    quadrature_rule, cell, integral_type, entitytype, modified_terminals, existing_tables,
    rtol=default_rtol, atol=default_atol
):
    """Build the element tables needed for a list of modified terminals.

    Input:
      entitytype - str
      modified_terminals - ordered sequence of unique modified terminals
      FIXME: Document

    Output:
      mt_tables - dict(ModifiedTerminal: table data)
    """
    # Add to element tables
    analysis = {}
    for mt in modified_terminals:
        # FIXME: Use a namedtuple for res
        res = get_modified_terminal_element(mt)
        if res:
            analysis[mt] = res

    # Build element numbering using topological ordering so subelements
    # get priority
    all_elements = [res[0] for res in analysis.values()]
    unique_elements = ufl.algorithms.sort_elements(
        ufl.algorithms.analysis.extract_sub_elements(all_elements))
    element_numbers = {element: i for i, element in enumerate(unique_elements)}

    tables = existing_tables
    mt_tables = {}

    for mt in modified_terminals:
        res = analysis.get(mt)
        if not res:
            continue
        element, avg, local_derivatives, flat_component = res

        # Generate table and store table name with modified terminal

        # Build name for this particular table
        element_number = element_numbers[element]
        name = generate_psi_table_name(quadrature_rule, element_number, avg, entitytype,
                                       local_derivatives, flat_component)

        # FIXME - currently just recalculate the tables every time,
        # only reusing them if they match numerically.
        # It should be possible to reuse the cached tables by name, but
        # the dofmap offset may differ due to restriction.

        tdim = cell.topological_dimension()
        if entitytype == "facet":
            if tdim == 1:
                t = get_ffcx_table_values(quadrature_rule.points, cell,
                                          integral_type, element, avg, entitytype,
                                          local_derivatives, flat_component)
            elif tdim == 2:
                new_table = []
                for ref in range(2):
                    new_table.append(get_ffcx_table_values(
                        permute_quadrature_interval(quadrature_rule.points, ref), cell,
                        integral_type, element, avg, entitytype, local_derivatives, flat_component))

                t = new_table[0]
                t['array'] = numpy.vstack([td['array'] for td in new_table])
            elif tdim == 3:
                cell_type = cell.cellname()
                if cell_type == "tetrahedron":
                    new_table = []
                    for rot in range(3):
                        for ref in range(2):
                            new_table.append(get_ffcx_table_values(
                                permute_quadrature_triangle(
                                    quadrature_rule.points, ref, rot),
                                cell, integral_type, element, avg, entitytype, local_derivatives,
                                flat_component))
                    t = new_table[0]
                    t['array'] = numpy.vstack([td['array'] for td in new_table])
                elif cell_type == "hexahedron":
                    new_table = []
                    for rot in range(4):
                        for ref in range(2):
                            new_table.append(get_ffcx_table_values(
                                permute_quadrature_quadrilateral(
                                    quadrature_rule.points, ref, rot),
                                cell, integral_type, element, avg, entitytype, local_derivatives, flat_component))
                    t = new_table[0]
                    t['array'] = numpy.vstack([td['array'] for td in new_table])
        else:
            t = get_ffcx_table_values(quadrature_rule.points, cell,
                                      integral_type, element, avg, entitytype,
                                      local_derivatives, flat_component)
        # Clean up table
        tbl = clamp_table_small_numbers(t['array'], rtol=rtol, atol=atol)
        tabletype = analyse_table_type(tbl)
        if tabletype in piecewise_ttypes:
            # Reduce table to dimension 1 along num_points axis in generated code
            tbl = tbl[:, :, :1, :]
        if tabletype in uniform_ttypes:
            # Reduce table to dimension 1 along num_entities axis in generated code
            tbl = tbl[:, :1, :, :]
        is_permuted = is_permuted_table(tbl)
        if not is_permuted:
            # Reduce table along num_perms axis
            tbl = tbl[:1, :, :, :]

        # Check for existing identical table
        xname_found = False
        for xname in tables:
            if equal_tables(tbl, tables[xname]):
                xname_found = True
                break

        if xname_found:
            name = xname
            # Retrieve existing table
            tbl = tables[name]
        else:
            # Store new table
            tables[name] = tbl

        cell_offset = 0
        basix_element = create_element(element)

        if mt.restriction == "-" and isinstance(mt.terminal, ufl.classes.FormArgument):
            # offset = 0 or number of element dofs, if restricted to "-"
            cell_offset = basix_element.dim

        offset = cell_offset + t['offset']
        block_size = t['stride']

        # tables is just np.arrays, mt_tables hold metadata too
        mt_tables[mt] = unique_table_reference_t(
            name, tbl, offset, block_size, tabletype,
            tabletype in piecewise_ttypes, tabletype in uniform_ttypes, is_permuted)

    return mt_tables
コード例 #12
0
ファイル: test_elements.py プロジェクト: jpdean/ffcx
def xtest_hhj(degree, expected_dim):
    "Test space dimensions of Hellan-Herrmann-Johnson element."
    P = create_element(FiniteElement("HHJ", "triangle", degree))
    assert P.dim == expected_dim
コード例 #13
0
ファイル: test_elements.py プロジェクト: jpdean/ffcx
def test_regge(degree, expected_dim):
    "Test space dimensions of generalized Regge element."
    P = create_element(FiniteElement("Regge", "triangle", degree))
    assert P.dim == expected_dim
コード例 #14
0
ファイル: test_elements.py プロジェクト: jpdean/ffcx
def test_discontinuous_lagrange(degree, expected_dim):
    "Test space dimensions of discontinuous Lagrange elements."
    P = create_element(FiniteElement("DG", "triangle", degree))
    assert P.dim == expected_dim
コード例 #15
0
ファイル: test_elements.py プロジェクト: jpdean/ffcx
def xtest_continuous_lagrange_quadrilateral_spectral(degree, expected_dim):
    "Test space dimensions of continuous TensorProduct elements (quadrilateral)."
    P = create_element(FiniteElement("Lagrange", "quadrilateral", degree, variant="spectral"))
    assert P.dim == expected_dim