def fit_predict(self, X_train, y_train, X_test, n_more_iter=0): """Return average of posterior estimates of the test samples. Parameters ---------- X_train : scipy.sparse.csc_matrix, (n_samples, n_features) y_train : array, shape (n_samples) X_test : scipy.sparse.csc_matrix, (n_test_samples, n_features) n_more_iter : int Number of iterations to continue from the current Coefficients. Returns ------- T : array, shape (n_test_samples) """ self.task = "regression" X_train, y_train, X_test = _validate_mcmc_fit_input(X_train, y_train, X_test) self.n_iter = self.n_iter + n_more_iter if n_more_iter > 0: _check_warm_start(self, X_train) assert self.prediction_.shape[0] == X_test.shape[0] assert self.hyper_param_.shape self.warm_start = True else: self.iter_count = 0 coef, y_pred = ffm.ffm_mcmc_fit_predict(self, X_train, X_test, y_train) self.w0_, self.w_, self.V_ = coef self.prediction_ = y_pred self.warm_start = False if self.iter_count != 0: self.iter_count = self.iter_count + n_more_iter else: self.iter_count = self.n_iter return y_pred
def fit_predict(self, X_train, y_train, X_test, n_more_iter=0): """Return average of posterior estimates of the test samples. Parameters ---------- X_train : scipy.sparse.csc_matrix, (n_samples, n_features) y_train : array, shape (n_samples) X_test : scipy.sparse.csc_matrix, (n_test_samples, n_features) n_more_iter : int Number of iterations to continue from the current Coefficients. Returns ------ T : array, shape (n_test_samples) """ self.task = "regression" X_train, y_train, X_test = _validate_mcmc_fit_input( X_train, y_train, X_test) self.n_iter = self.n_iter + n_more_iter if n_more_iter > 0: _check_warm_start(self, X_train) assert self.prediction_.shape[0] == X_test.shape[0] assert self.hyper_param_.shape self.warm_start = True else: self.iter_count = 0 coef, y_pred = ffm.ffm_mcmc_fit_predict(self, X_train, X_test, y_train) self.w0_, self.w_, self.V_ = coef self.prediction_ = y_pred self.warm_start = False if self.iter_count != 0: self.iter_count = self.iter_count + n_more_iter else: self.iter_count = self.n_iter return y_pred
def fit_predict_proba(self, X_train, y_train, X_test): """Return average class probabilities of posterior estimates of the test samples. Use only with MCMC! Parameters ---------- X_train : scipy.sparse.csc_matrix, (n_samples, n_features) y_train : array, shape (n_samples) the targets have to be encodes as {-1, 1}. X_test : scipy.sparse.csc_matrix, (n_test_samples, n_features) Returns ------- y_pred : array, shape (n_test_samples) Returns probability estimates for the class with lowest classification label. """ self.task = "classification" self.classes_ = np.unique(y_train) if len(self.classes_) != 2: raise ValueError("This solver only supports binary classification" " but the data contains" " class: %r" % self.classes_) # fastFM-core expects labels to be in {-1,1} y_train = y_train.copy() i_class1 = (y_train == self.classes_[0]) y_train[i_class1] = -1 y_train[~i_class1] = 1 X_train, y_train, X_test = _validate_mcmc_fit_input(X_train, y_train, X_test) y_train = _validate_class_labels(y_train) coef, y_pred = ffm.ffm_mcmc_fit_predict(self, X_train, X_test, y_train) self.w0_, self.w_, self.V_ = coef return y_pred
def fit_predict_proba(self, X_train, y_train, X_test): """Return average class probabilities of posterior estimates of the test samples. Use only with MCMC! Parameters ---------- X_train : scipy.sparse.csc_matrix, (n_samples, n_features) y_train : array, shape (n_samples) the targets have to be encodes as {-1, 1}. X_test : scipy.sparse.csc_matrix, (n_test_samples, n_features) Returns ------ y_pred : array, shape (n_test_samples) Returns probability estimates for the class with lowest classification label. """ self.task = "classification" self.classes_ = np.unique(y_train) if len(self.classes_) != 2: raise ValueError("This solver only supports binary classification" " but the data contains" " class: %r" % self.classes_) # fastFM-core expects labels to be in {-1,1} y_train = y_train.copy() i_class1 = (y_train == self.classes_[0]) y_train[i_class1] = -1 y_train[-i_class1] = 1 X_train, y_train, X_test = _validate_mcmc_fit_input( X_train, y_train, X_test) y_train = _validate_class_labels(y_train) coef, y_pred = ffm.ffm_mcmc_fit_predict(self, X_train, X_test, y_train) self.w0_, self.w_, self.V_ = coef return y_pred