コード例 #1
0
def agglomerate(cv_path_1,
                cv_path_2,
                contiguous=False,
                inplace=False,
                no_zero=True):
    """Given two cloudvolumes, intersect and perform agglomeration"""
    cv_args = dict(bounded=True,
                   fill_missing=True,
                   autocrop=False,
                   cache=False,
                   compress_cache=None,
                   cdn_cache=False,
                   progress=False,
                   provenance=None,
                   compress=True,
                   non_aligned_writes=True,
                   parallel=True)

    cv1 = cloudvolume.CloudVolume('file://' + cv_path_1, mip=0, **cv_args)
    cv2 = cloudvolume.CloudVolume('file://' + cv_path_2, mip=0, **cv_args)

    bb1 = get_bbox_from_cv(cv1)
    bb2 = get_bbox_from_cv(cv2)

    int_bb = Bbox.intersection(bb1, bb2)
    data_1 = cv1[int_bb]
    data_2 = cv2[int_bb]
    if contiguous:
        data_1, map_1 = make_labels_contiguous(data_1)
        data_2, map_2 = make_labels_contiguous(data_2)

    data_1 = np.uint32(data_1)
    data_2 = np.uint32(data_2)
    # find remap from 2 to 1
    remap_label = find_remap(data_2, data_1)
    if no_zero:
        # filter out ones with either key or val == 0
        remap_label = {
            k: v
            for k, v in remap_label.items() if k != 0 and v != 0
        }
    data_2_full = cv2[bb2]
    data_2_full_remap = perform_remap(data_2_full, remap_label)
    if inplace:
        cv2[bb2] = data_2_full_remap
        update_mips(cv_path_2, bb2, **cv_args)

    return remap_label
コード例 #2
0
def update_ids_and_write(seg_map, sub_indices):
    pbar = tqdm(sub_indices, desc='Update ids to be globally unique')
    for k in pbar:
        s = seg_map[k]['input']
        seg, offset_zyx = load_inference(s)
        offset_xyz = offset_zyx[::-1]
        size_xyz = seg.shape[::-1]

        bbox = seg_map[k]['bbox']
        seg = np.transpose(seg, [2, 1, 0])
        # # make labels contiguous and unique globally but keep 0 intact
        seg = np.uint32(seg)
        zeros = seg == 0
        seg, _ = make_labels_contiguous(seg)
        seg = np.uint32(seg)
        # local_max = np.max(seg)
        seg += seg_map[k]['global_offset']
        seg[zeros] = 0

        # convert to precomputed
        precomputed_path = seg_map[k]['output']
        #seg_map[i] = (bbox, precomputed_path)
        resolution = seg_map[k]['resolution']
        chunk_size = seg_map[k]['chunk_size']
        cv = prepare_precomputed(precomputed_path, offset_xyz, size_xyz,
                                 resolution, chunk_size)
        cv[bbox] = seg
コード例 #3
0
def get_seg_map(input_dir,
                output_dir,
                resolution,
                chunk_size,
                sub_indices,
                post_clean_up=False):
    if not sub_indices.size:
        return {}
    get_name = lambda s: re.sub('seg-', 'precomputed-', s)
    seg_list = glob.glob(os.path.join(input_dir, 'seg*'))
    seg_list.sort()

    seg_map = dict()
    pbar = tqdm(sub_indices, desc='Generating seg map')
    for i in pbar:
        # for i in tqdm(sub_indices):
        # pbar.set_description("Generating Seg Map:")
        seg_path = seg_list[i]
        if not len(
                glob.glob(os.path.join(seg_path, '**/*.npz'), recursive=True)):
            continue
        seg, offset_zyx = load_inference(seg_path)
        offset_xyz = offset_zyx[::-1]
        size_xyz = seg.shape[::-1]

        bbox = Bbox(a=offset_xyz, b=offset_xyz + size_xyz)
        seg = np.transpose(seg, [2, 1, 0])

        # make labels contiguous and unique globally but keep 0 intact
        min_particle = 1000
        if post_clean_up:
            clean_up(seg, min_particle)
            # non_background = (seg > 0).astype(np.uint8)
            # seg = connected_components(non_background)

        seg = np.uint32(seg)
        #zeros = seg==0
        seg, _ = make_labels_contiguous(seg)
        seg = np.uint32(seg)
        local_max = np.max(seg)
        #seg += global_max
        # global_max = np.max(seg)
        # seg[zeros] = 0

        precomputed_path = os.path.join(output_dir,
                                        get_name(os.path.basename(seg_path)))
        seg_map[i] = {
            'bbox': bbox,
            'input': os.path.abspath(seg_path),
            'output': os.path.abspath(precomputed_path),
            'resolution': resolution,
            'chunk_size': chunk_size,
            'local_max': local_max
        }
    return seg_map
コード例 #4
0
def get_seg_map(input_dir,
                output_dir,
                resolution,
                chunk_size,
                sub_indices,
                post_clean_up=False,
                verbose=False):
    if not sub_indices.size:
        return {}
    get_name = lambda s: re.sub('seg-', 'precomputed-', s)
    seg_list = glob.glob(os.path.join(input_dir, 'seg*'))
    seg_list.sort()

    seg_map = dict()
    if verbose:
        pbar = tqdm(sub_indices, desc='Generating seg map')
    else:
        pbar = sub_indices
    for i in pbar:
        seg_path = seg_list[i]
        if not len(
                glob.glob(os.path.join(seg_path, '**/*.npz'), recursive=True)):
            seg_map[i] = {}
            continue
        seg, offset_zyx = load_inference(seg_path)
        offset_xyz = offset_zyx[::-1]
        size_xyz = seg.shape[::-1]

        bbox = Bbox(a=offset_xyz, b=offset_xyz + size_xyz)
        seg = np.transpose(seg, [2, 1, 0])

        # make labels contiguous and unique globally but keep 0 intact
        min_particle = 1000
        if post_clean_up:
            clean_up(seg, min_particle)

        seg = np.uint32(seg)
        seg, _ = make_labels_contiguous(seg)
        seg = np.uint32(seg)
        local_max = np.max(seg)

        precomputed_path = os.path.join(output_dir,
                                        get_name(os.path.basename(seg_path)))
        seg_map[i] = {
            'bbox': bbox,
            'input': os.path.abspath(seg_path),
            'output': os.path.abspath(precomputed_path),
            'resolution': resolution,
            'chunk_size': chunk_size,
            'local_max': local_max
        }
    return seg_map
コード例 #5
0
def agglomerate(cv_path_1,
                cv_path_2,
                overlap_thresh,
                contiguous=False,
                mutual_exclusive=False,
                no_zero=True):
    """Given two cloudvolumes, intersect and perform agglomeration"""
    cv_args = dict(bounded=True,
                   fill_missing=True,
                   autocrop=False,
                   cache=False,
                   compress_cache=None,
                   cdn_cache=False,
                   progress=False,
                   provenance=None,
                   compress=True,
                   non_aligned_writes=True,
                   parallel=False)
    cv1 = cloudvolume.CloudVolume('file://' + cv_path_1, mip=0, **cv_args)
    cv2 = cloudvolume.CloudVolume('file://' + cv_path_2, mip=0, **cv_args)

    bb1 = get_bbox_from_cv(cv1)
    bb2 = get_bbox_from_cv(cv2)

    int_bb = Bbox.intersection(bb1, bb2)
    data_1 = cv1[int_bb]
    data_2 = cv2[int_bb]
    if contiguous:
        data_1, map_1 = make_labels_contiguous(data_1)
        data_2, map_2 = make_labels_contiguous(data_2)

    data_1 = np.uint32(data_1)
    data_2 = np.uint32(data_2)
    if mutual_exclusive:
        remap_label = find_remap_v2(data_2, data_1, overlap_thresh)
    else:
        remap_label = find_remap(data_2, data_1, overlap_thresh)

    return remap_label
コード例 #6
0
def get_seg_map(input_dir, output_dir, resolution, chunk_size, sub_indices):
    if not sub_indices.size:
        return {}
    get_name = lambda s: re.sub('seg-', 'precomputed-', s)
    seg_list = glob.glob(os.path.join(input_dir, 'seg*'))
    seg_list.sort()

    seg_map = dict()

    pbar = tqdm(sub_indices, desc='Generating seg map')
    for i in pbar:
        # for i in tqdm(sub_indices):
        # pbar.set_description("Generating Seg Map:")
        seg_path = seg_list[i]
        seg, offset_zyx = load_inference(seg_path)
        offset_xyz = offset_zyx[::-1]
        size_xyz = seg.shape[::-1]

        bbox = Bbox(a=offset_xyz, b=offset_xyz + size_xyz)
        seg = np.transpose(seg, [2, 1, 0])

        # make labels contiguous and unique globally but keep 0 intact
        seg = np.uint32(seg)
        #zeros = seg==0
        seg, _ = make_labels_contiguous(seg)
        seg = np.uint32(seg)
        local_max = np.max(seg)
        #seg += global_max
        # global_max = np.max(seg)
        # seg[zeros] = 0

        precomputed_path = os.path.join(output_dir,
                                        get_name(os.path.basename(seg_path)))
        seg_map[i] = {
            'bbox': bbox,
            'input': os.path.abspath(seg_path),
            'output': os.path.abspath(precomputed_path),
            'resolution': resolution,
            'chunk_size': chunk_size,
            'local_max': local_max
        }
    return seg_map
コード例 #7
0
ファイル: remap_cv.py プロジェクト: Hanyu-Li/klab_utils
def get_seg_map_cv(input_dir, output_dir, sub_indices, post_clean_up=False, verbose=False):
  if not sub_indices.size:
    return {}
  seg_list = glob.glob(os.path.join(input_dir, 'precomputed*'))
  seg_list.sort()
  
  seg_map = dict()
  if verbose:
    pbar = tqdm(sub_indices, desc='Generating seg map')
  else:
    pbar = sub_indices
  for i in pbar:
    seg_path = seg_list[i]
    seg_cv = cloudvolume.CloudVolume('file://%s' % seg_path, mip=0, 
      progress=False, parallel=False)
    bbox = seg_cv.meta.bounds(0)
    seg = np.array(seg_cv[bbox][..., 0])
    resolution = seg_cv.meta.resolution(0)
    chunk_size = seg_cv.meta.chunk_size(0)
    
    # make labels contiguous and unique globally but keep 0 intact
    min_particle = 1000
    if post_clean_up:
      clean_up(seg, min_particle) 
     
    seg = np.uint32(seg)
    seg, _ = make_labels_contiguous(seg)
    seg = np.uint32(seg)
    local_max = np.max(seg)
    
    precomputed_path = os.path.join(
      output_dir, os.path.basename(seg_path))

    seg_map[i] = {
      'bbox': bbox, 
      'input': os.path.abspath(seg_path), 
      'output': os.path.abspath(precomputed_path), 
      'resolution': resolution,
      'chunk_size': chunk_size,
      'local_max': local_max}
  return seg_map
コード例 #8
0
ファイル: remap_cv.py プロジェクト: Hanyu-Li/klab_utils
def update_ids_and_write_cv(seg_map, sub_indices, verbose=False):
  if verbose:
    pbar = tqdm(sub_indices, desc='Update ids to be globally unique')
  else:
    pbar = sub_indices
  for k in pbar:
    if not seg_map[k]: continue
    seg_path = seg_map[k]['input']
    # seg, offset_zyx = load_inference(s)
    seg_cv = cloudvolume.CloudVolume('file://%s' % seg_path, mip=0, 
      progress=False, parallel=False)
    bbox = seg_cv.meta.bounds(0)
    seg = np.array(seg_cv[bbox][..., 0])
    # offset_xyz = offset_zyx[::-1]
    # size_xyz = seg.shape[::-1]

    # bbox = seg_map[k]['bbox']
    # seg = np.transpose(seg, [2, 1, 0])
    # # make labels contiguous and unique globally but keep 0 intact
    seg = np.uint32(seg)
    zeros = seg == 0
    seg, _ = make_labels_contiguous(seg)
    seg = np.uint32(seg)
    # local_max = np.max(seg)
    seg += seg_map[k]['global_offset']
    seg[zeros] = 0

    # convert to precomputed
    precomputed_path = seg_map[k]['output']
    resolution = seg_map[k]['resolution']
    chunk_size = seg_map[k]['chunk_size']

    out_info = seg_cv.info.copy()
    # out_cv = cloudvo
    # cv = prepare_precomputed(precomputed_path, offset_xyz, size_xyz, resolution, chunk_size)
    # cv[bbox] = seg

    out_cv = cloudvolume.CloudVolume('file://%s' % precomputed_path, info=out_info, mip=0)
    out_cv.commit_info()
    out_cv[...] = seg