def save_new_object(folder, test, cam, ambient_folder='ambient/', dark_folder='dark/'): print 'saving new object' images = image_list(folder + test + '/' + cam + '_') ambient = image_list(folder + ambient_folder + cam + '_') dark = image_list(folder + dark_folder + cam + '_') im_obj = FiberImage(images, dark=dark, ambient=ambient, camera=cam) im_obj.save_image(image_file(folder, test, cam)) im_obj.save_object(object_file(folder, test, cam))
def main(): num_images = 1 interval = 1 max_image = 10 cam = 'nf' # folder = '../data/modal_noise/Kris_data/rectangular_100x300um/baseline/' # folder = '../data/modal_noise/rv_error/coupled_ag_new/' folder = '../data/modal_noise/rec_fiber_freq_tests/agitated_15volts_120mm_2s/' # folder = '../data/stability/2017-03-19 Stability Test/circular_200um/' # ambient = image_list(folder + '../ambient_2s/' + cam + '_') ambient = None # dark = image_list(folder + 'dark/' + cam + '_') dark = None # with imageio.get_writer(folder + cam + '_' + str(num_images) + '.gif', mode='I') as writer: with imageio.get_writer(folder + cam + '_snr.gif', mode='I') as writer: for i in xrange(0, max_image, interval): # images = image_list(folder + cam + '_', num=num_images, start=i) images = image_list(folder + cam + '_', num=i+1, start=0) image = FiberImage(images, ambient=ambient, dark=dark, camera=cam) print images[-1] writer.append_data(image.get_image())
def output_files(folder, f): return image_list(folder + 'output_' + str(f) + '/ff_')
def ambient_files(folder): return image_list(folder + 'ambient/ff_')
def dark_files(folder): return image_list(folder + 'dark/ff_')
def image_list_frd(image_name, f_ratios, **kwargs): return [ image_list(image_name + str(f) + '/im_', **kwargs) for f in f_ratios ]
from fiber_properties import FiberImage, image_list, show_image_array folder = '../data/scrambling/2016-08-05 Prototype Core Extension 1/' dark_folder = folder + 'Dark/' ambient_folder = folder + 'Ambient/' in_images = image_list(ambient_folder + 'in_') nf_images = image_list(ambient_folder + 'nf_') ff_images = image_list(ambient_folder + 'ff_') print 'input' for image in in_images: print FiberImage(image, camera='in', ambient=in_images).get_fiber_centroid(method='full', units='pixels') print print 'near field' for image in nf_images: nf_obj = FiberImage(image, camera='nf') print nf_obj.get_fiber_centroid(method='full', units='pixels') print print 'far field' for image in ff_images: ff_obj = FiberImage(image, camera='ff') print ff_obj.get_fiber_centroid(method='full', units='pixels')
from fiber_properties import FiberImage, image_list obj = FiberImage(image_list('pos_1/nf_'), ambient=image_list('../ambient/nf_'), camera='ff') print obj.get_fiber_center(method='rectangle', show_image=True)
from fiber_properties import (scrambling_gain, image_list, plot_scrambling_gain_input_output, plot_scrambling_gain, save_plot, show_plots, load_image_object, FiberImage) NEW_DATA = False FOLDER = '../data/EXPRES/rectangular_132/scrambling/' POSITIONS = ['pos_1', 'pos_2', 'pos_3', 'pos_4', 'pos_5'] if __name__ == '__main__': if NEW_DATA: from fiber_properties import FiberImage in_dark = image_list(FOLDER + '../dark/in_') in_ambient = image_list(FOLDER + '../ambient/in_') nf_dark = image_list(FOLDER + '../dark/nf_') nf_ambient = image_list(FOLDER + '../ambient/nf_') ff_dark = image_list(FOLDER + '../dark/ff_') ff_ambient = image_list(FOLDER + '../ambient/ff_') for pos in POSITIONS: print 'Initializing ' + pos in_images = image_list(FOLDER + pos + '/in_') nf_images = image_list(FOLDER + pos + '/nf_') ff_images = image_list(FOLDER + pos + '/ff_') FiberImage(in_images, in_dark, in_ambient, camera='in').save() FiberImage(nf_images, nf_dark, nf_ambient, camera='nf').save() FiberImage(ff_images, ff_dark, ff_ambient, camera='ff').save()
def output_files(folder, f): return image_list(folder + 'Output ' + str(f) + '/im_')
def input_files(folder, f): return image_list(folder + 'Input ' + str(f) + '/im_')
def ambient_files(folder): return image_list(folder + 'Ambient/im_')
def dark_files(folder): return image_list(folder + 'Dark/im_')
#==== Modal Noise Test =======================================================# #=============================================================================# if __name__ == '__main__': from fiber_properties import FiberImage, image_list, plot_fft base_folder = '../data/Modal Noise Measurements/2016-07-26/' ambient_folder = base_folder + 'ambient/600um/' dark_folder = base_folder + 'dark/' agitated_folder = base_folder + 'images/600um/agitated/' unagitated_folder = base_folder + 'images/600um/unagitated/' nf = {} ff = {} nf_dark = image_list(dark_folder + 'nf_dark_') nf_ambient = image_list(ambient_folder + 'nf_ambient_') ff_dark = image_list(dark_folder + 'ff_dark_') ff_ambient = image_list(ambient_folder + 'ff_ambient_') nf_agitated = FiberImage(image_list(agitated_folder + 'nf_agitated_'), nf_dark, nf_ambient) nf_unagitated = FiberImage( image_list(unagitated_folder + 'nf_unagitated_'), nf_dark, nf_ambient) nf_baseline = FiberImage(nf_agitated.get_tophat_fit(), pixel_size=nf_agitated.get_pixel_size(), threshold=0.1, camera='nf') ff_agitated = FiberImage(image_list(agitated_folder + 'ff_agitated_'), ff_dark, ff_ambient)
from fiber_properties import (scrambling_gain, image_list, plot_scrambling_gain_input_output, plot_scrambling_gain, save_plot, show_plots, load_image_object, FiberImage) if __name__ == '__main__': NEW_DATA = False folder = '../data/scrambling/2016-08-05 Prototype Core Extension 1/' if NEW_DATA: from fiber_properties import FiberImage in_dark = image_list(folder + 'Dark/in_') in_ambient = image_list(folder + 'Ambient/in_') nf_dark = image_list(folder + 'Dark/nf_') nf_ambient = image_list(folder + 'Ambient/nf_') ff_dark = image_list(folder + 'Dark/ff_') ff_ambient = image_list(folder + 'Ambient/ff_') for shift in ['00', '05', '10', '15', '20', '25', '30']: print 'Initializing Shift ' + shift in_images = image_list(folder + 'Shift_' + shift + '/in_') nf_images = image_list(folder + 'Shift_' + shift + '/nf_') ff_images = image_list(folder + 'Shift_' + shift + '/ff_') FiberImage(in_images, in_dark, in_ambient, camera='in').save() FiberImage(nf_images, nf_dark, nf_ambient, camera='nf').save() FiberImage(ff_images, ff_dark, ff_ambient, camera='ff').save() shifts = ['00', '05', '10', '15', '20', '25', '30']
#==== Modal Noise Test =======================================================# #=============================================================================# if __name__ == '__main__': from fiber_properties import FiberImage, image_list, plot_fft base_folder = '../data/Modal Noise Measurements/2016-07-26/' ambient_folder = base_folder + 'ambient/600um/' dark_folder = base_folder + 'dark/' agitated_folder = base_folder + 'images/600um/agitated/' unagitated_folder = base_folder + 'images/600um/unagitated/' nf = {} ff = {} nf_dark = image_list(dark_folder + 'nf_dark_') nf_ambient = image_list(ambient_folder + 'nf_ambient_') ff_dark = image_list(dark_folder + 'ff_dark_') ff_ambient = image_list(ambient_folder + 'ff_ambient_') nf_agitated = FiberImage(image_list(agitated_folder + 'nf_agitated_'), nf_dark, nf_ambient) nf_unagitated = FiberImage(image_list(unagitated_folder + 'nf_unagitated_'), nf_dark, nf_ambient) nf_baseline = FiberImage(nf_agitated.get_tophat_fit(), pixel_size=nf_agitated.get_pixel_size(), threshold=0.1, camera='nf') ff_agitated = FiberImage(image_list(agitated_folder + 'ff_agitated_'), ff_dark, ff_ambient) ff_unagitated = FiberImage(image_list(unagitated_folder + 'ff_unagitated_'),