コード例 #1
0
ファイル: fatools.py プロジェクト: tskisner/LSS
def mkfa(targetf,tileff,rd,fad,srun,nrun,DESIMODEL):
	'''
	make the fiberassign files needed
	targetf is the target file (e.g., an mtl file)
	tilef is the root string for the tile files produced for each epoch
	rd is the output directory
	fad is the directory for the data fiberassign files
	srun is the initial epoch
	nrun is the number of epochs
	DESIMODEL is the directory for where to find the focal plane model for running these
	'''
	os.environ['DESIMODEL'] = DESIMODEL
	#targetf = e2eout +program+'/randoms_mtl_cuttod.fits' #above file, cut to ~e2e area with significant padding
	

	#use fiberassign tools to read in randoms to be assigned
	tgs = Targets()
	load_target_file(tgs,targetf)
	print('loaded target file '+targetf)
	tree = TargetTree(tgs, 0.01)

	for run in range(srun,srun+nrun):
		#make the tile file for this run
		#e2e.mke2etiles(run,program=program)
		tilef = tileff+str(run)+'.fits'
		#+str(run)+'.fits'


		randir = rd +str(run)
		#+str(run)
		if os.path.isdir(randir):
			ofls = glob.glob(randir+'/*')
			for fl in ofls:
				os.remove(fl) #remove the old files if we are rerunning
		else:	
			os.mkdir(randir)
		
		fafls = glob.glob(fad+str(run)+'/fiberassign/fiberassign*')
		#+str(run)+'/fiberassign/fiberassign*')
		hd = fitsio.read_header(fafls[0])
		dt = hd['FA_RUN']

		hw = load_hardware(rundate=dt)

		tiles = load_tiles(tiles_file=tilef)
		tgsavail = TargetsAvailable(hw, tgs, tiles, tree)
		favail = LocationsAvailable(tgsavail)
		#del tree
		asgn = Assignment(tgs, tgsavail, favail)
		asgn.assign_unused(TARGET_TYPE_SCIENCE)
		write_assignment_fits(tiles, asgn, out_dir=randir, all_targets=True)
		print('wrote assignment files to '+randir)	
コード例 #2
0
def getfatiles(targetf, tilef, dirout='', dt='2020-03-10T00:00:00'):
    '''
    will write out fiberassignment files for each tile with the FASSIGN, FTARGETS, FAVAIL HDUS
    these are what are required to determine the geometry of what fiberassign thinks could have been observed and also match to actual observations (though FASSIGN is not really necessary)
    targetf is file with all targets to be run through
    tilef lists the tiles to "assign"
    dirout is the directory where this all gets written out !make sure this is unique for every different target!
    '''
    tgs = Targets()
    load_target_file(tgs, targetf)
    print('loaded target file ' + targetf)
    tree = TargetTree(tgs, 0.01)
    hw = load_hardware(rundate=dt)
    tiles = load_tiles(tiles_file=tilef)
    tgsavail = TargetsAvailable(hw, tgs, tiles, tree)
    favail = LocationsAvailable(tgsavail)
    del tree
    asgn = Assignment(tgs, tgsavail, favail)
    asgn.assign_unused(TARGET_TYPE_SCIENCE)
    write_assignment_fits(tiles, asgn, out_dir=dirout, all_targets=True)
    print('wrote assignment files to ' + dirout)
コード例 #3
0
ファイル: fa4lsscat_run.py プロジェクト: tskisner/LSS
tgs = Targets()
load_target_file(tgs, targetf)
print('loaded target file ' + targetf)
tree = TargetTree(tgs, 0.01)

for run in range(srun, srun + nrun):
    #make the tile file for this run
    mke2etiles(run, program=program)
    tilef = e2eout + 'e2etiles_run' + str(run) + '.fits'

    randir = e2eout + program + '/randoms/' + str(run)
    if os.path.isdir(randir):
        pass
    else:
        os.mkdir(randir)

    fafls = glob.glob(e2ein + 'run/quicksurvey/' + program + '/' + str(run) +
                      '/fiberassign/fiberassign*')
    hd = fitsio.read_header(fafls[0])
    dt = hd['FA_RUN']

    hw = load_hardware(rundate=dt)

    tiles = load_tiles(tiles_file=tilef)
    tgsavail = TargetsAvailable(hw, tgs, tiles, tree)
    favail = LocationsAvailable(tgsavail)
    #del tree
    asgn = Assignment(tgs, tgsavail, favail)
    asgn.assign_unused(TARGET_TYPE_SCIENCE)
    write_assignment_fits(tiles, asgn, out_dir=randir, all_targets=True)
    print('wrote assignment files to ' + randir)
コード例 #4
0
    def test_science(self):
        set_matplotlib_pdf_backend()
        import matplotlib.pyplot as plt
        test_dir = test_subdir_create("qa_test_science")
        log_file = os.path.join(test_dir, "log.txt")

        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        # For this test, we will use just 2 science target classes, in order to verify
        # we get approximately the correct distribution
        sdist = [(3000, 1, 0.25, "QSO"), (2000, 1, 0.75, "ELG")]
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               0,
                               density=self.density_science,
                               science_frac=sdist)

        log_msg = "Simulated {} science targets\n".format(nscience)

        tgs = Targets()
        load_target_file(tgs, input_mtl)

        # Read hardware properties
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        # Precompute target positions
        tile_targetids, tile_x, tile_y = targets_in_tiles(hw, tgs, tiles)
        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tiles, tile_targetids, tile_x, tile_y)

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Pass empty map of STUCK positioners that land on good sky
        stucksky = {}

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail, stucksky)

        # First-pass assignment of science targets
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Redistribute
        asgn.redistribute_science()

        write_assignment_fits(tiles, asgn, out_dir=test_dir, all_targets=True)

        tile_ids = list(tiles.id)

        merge_results([input_mtl],
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      copy_fba=False)

        # FIXME:  In order to use the qa_targets function, we need to know the
        # starting requested number of observations (NUMOBS_INIT).  Then we can use
        # that value for each target and compare to the number actually assigned.
        # However, the NUMOBS_INIT column was removed from the merged TARGET table.
        # If we are ever able to reach consensus on restoring that column, then we
        # can re-enable these tests below.
        #
        # qa_targets(
        #     hw,
        #     tiles,
        #     result_dir=test_dir,
        #     result_prefix="fiberassign-"
        # )
        #
        # # Load the target catalog so that we have access to the target properties
        #
        # fd = fitsio.FITS(input_mtl, "r")
        # scidata = np.array(np.sort(fd[1].read(), order="TARGETID"))
        # fd.close()
        # del fd
        #
        # # How many possible positioner assignments did we have?
        # nassign = 5000 * len(tile_ids)
        #
        # possible = dict()
        # achieved = dict()
        #
        # namepat = re.compile(r".*/qa_target_count_(.*)_init-(.*)\.fits")
        # for qafile in glob.glob("{}/qa_target_count_*.fits".format(test_dir)):
        #     namemat = namepat.match(qafile)
        #     name = namemat.group(1)
        #     obs = int(namemat.group(2))
        #     if obs == 0:
        #         continue
        #     fd = fitsio.FITS(qafile, "r")
        #     fdata = fd["COUNTS"].read()
        #     # Sort by target ID so we can select easily
        #     fdata = np.sort(fdata, order="TARGETID")
        #     tgid = np.array(fdata["TARGETID"])
        #     counts = np.array(fdata["NUMOBS_DONE"])
        #     avail = np.array(fdata["NUMOBS_AVAIL"])
        #     del fdata
        #     fd.close()
        #
        #     # Select target properties.  BOTH TARGET LISTS MUST BE SORTED.
        #     rows = np.where(np.isin(scidata["TARGETID"], tgid, assume_unique=True))[0]
        #
        #     ra = np.array(scidata["RA"][rows])
        #     dec = np.array(scidata["DEC"][rows])
        #     dtarget = np.array(scidata["DESI_TARGET"][rows])
        #     init = np.array(scidata["NUMOBS_INIT"][rows])
        #
        #     requested = obs * np.ones_like(avail)
        #
        #     under = np.where(avail < requested)[0]
        #     over = np.where(avail > requested)[0]
        #
        #     limavail = np.array(avail)
        #     limavail[over] = obs
        #
        #     deficit = np.zeros(len(limavail), dtype=np.int)
        #
        #     deficit[:] = limavail - counts
        #     deficit[avail == 0] = 0
        #
        #     possible[name] = np.sum(limavail)
        #     achieved[name] = np.sum(counts)
        #
        #     log_msg += "{}-{}:\n".format(name, obs)
        #
        #     pindx = np.where(deficit > 0)[0]
        #     poor_tgid = tgid[pindx]
        #     poor_dtarget = dtarget[pindx]
        #     log_msg += "  Deficit > 0: {}\n".format(len(poor_tgid))
        #     poor_ra = ra[pindx]
        #     poor_dec = dec[pindx]
        #     poor_deficit = deficit[pindx]
        #
        #     # Plot Target availability
        #     # Commented out by default, since in the case of high target density
        #     # needed for maximizing assignments, there are far more targets than
        #     # the number of available fiber placements.
        #
        #     # marksize = 4 * np.ones_like(deficit)
        #     #
        #     # fig = plt.figure(figsize=(12, 12))
        #     # ax = fig.add_subplot(1, 1, 1)
        #     # ax.scatter(ra, dec, s=2, c="black", marker="o")
        #     # for pt, pr, pd, pdef in zip(poor_tgid, poor_ra, poor_dec, poor_deficit):
        #     #     ploc = plt.Circle(
        #     #         (pr, pd), radius=(0.05*pdef), fc="none", ec="red"
        #     #     )
        #     #     ax.add_artist(ploc)
        #     # ax.set_xlabel("RA", fontsize="large")
        #     # ax.set_ylabel("DEC", fontsize="large")
        #     # ax.set_title(
        #     #     "Target \"{}\": (min(avail, requested) - counts) > 0".format(
        #     #         name, obs
        #     #     )
        #     # )
        #     # #ax.legend(handles=lg, framealpha=1.0, loc="upper right")
        #     # plt.savefig(os.path.join(test_dir, "{}-{}_deficit.pdf".format(name, obs)), dpi=300, format="pdf")
        #
        # log_msg += \
        #     "Assigned {} tiles for total of {} possible target observations\n".format(
        #         len(tile_ids), nassign
        #     )
        # ach = 0
        # for nm in possible.keys():
        #     ach += achieved[nm]
        #     log_msg += \
        #         "  type {} had {} possible target obs and achieved {}\n".format(
        #             nm, possible[nm], achieved[nm]
        #         )
        # frac = 100.0 * ach / nassign
        # log_msg += \
        #     "  {} / {} = {:0.2f}% of fibers were assigned\n".format(
        #         ach, nassign, frac
        #     )
        # for nm in possible.keys():
        #     log_msg += \
        #         "  type {} had {:0.2f}% of achieved observations\n".format(
        #             nm, achieved[nm] / ach
        #         )
        # with open(log_file, "w") as f:
        #     f.write(log_msg)
        #
        # self.assertGreaterEqual(frac,  99.0)

        # Test if qa-fiberassign script runs without crashing
        script = os.path.join(self.binDir, "qa-fiberassign")
        if os.path.exists(script):
            fafiles = glob.glob(f"{test_dir}/fiberassign-*.fits")
            cmd = "{} --targets {}".format(script, " ".join(fafiles))
            err = subprocess.call(cmd.split())
            self.assertEqual(err, 0, f"FAILED ({err}): {cmd}")
        else:
            print(f"ERROR: didn't find {script}")
コード例 #5
0
ファイル: test_assign.py プロジェクト: rstaten/fiberassign
    def test_io(self):
        np.random.seed(123456789)
        test_dir = test_subdir_create("assign_test_io")
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Compute the targets available to each fiber for each tile.
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Pass empty map of STUCK positioners that land on good sky
        stucksky = {}

        # First pass assignment
        asgn = Assignment(tgs, tgsavail, favail, stucksky)
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Write out, merge, read back in and verify

        write_assignment_ascii(tiles,
                               asgn,
                               out_dir=test_dir,
                               out_prefix="test_io_ascii_")

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              out_prefix="basic_",
                              all_targets=False)

        write_assignment_fits(tiles,
                              asgn,
                              out_dir=test_dir,
                              out_prefix="full_",
                              all_targets=True)

        plotpetals = [0]
        # plotpetals = None

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="basic_",
                   plot_dir=test_dir,
                   plot_prefix="basic_",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="full_",
                   plot_dir=test_dir,
                   plot_prefix="full_",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)

        target_files = [input_mtl, input_sky, input_std]
        tile_ids = list(tiles.id)

        merge_results(target_files,
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      result_prefix="basic_",
                      out_dir=test_dir,
                      out_prefix="basic_tile-",
                      copy_fba=False)

        merge_results(target_files,
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      result_prefix="full_",
                      out_dir=test_dir,
                      out_prefix="full_tile-",
                      copy_fba=False)

        # Here we test reading with the standard reading function

        for tid in tile_ids:
            tdata = asgn.tile_location_target(tid)
            avail = tgsavail.tile_data(tid)
            # Check basic format
            infile = os.path.join(test_dir,
                                  "basic_tile-{:06d}.fits".format(tid))
            inhead, fiber_data, targets_data, avail_data, gfa_targets = \
                read_assignment_fits_tile((tid, infile))

            for lid, tgid, tgra, tgdec in zip(fiber_data["LOCATION"],
                                              fiber_data["TARGETID"],
                                              fiber_data["TARGET_RA"],
                                              fiber_data["TARGET_DEC"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)

            # Check full format
            infile = os.path.join(test_dir,
                                  "full_tile-{:06d}.fits".format(tid))
            inhead, fiber_data, targets_data, avail_data, gfa_targets = \
                read_assignment_fits_tile((tid, infile))
            for lid, tgid, tgra, tgdec in zip(fiber_data["LOCATION"],
                                              fiber_data["TARGETID"],
                                              fiber_data["TARGET_RA"],
                                              fiber_data["TARGET_DEC"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)

        # Now read the files directly with fitsio and verify against the input
        # target data.

        for tid in tile_ids:
            tdata = asgn.tile_location_target(tid)
            avail = tgsavail.tile_data(tid)
            # Check basic format
            infile = os.path.join(test_dir,
                                  "basic_tile-{:06d}.fits".format(tid))
            fdata = fitsio.FITS(infile, "r")
            fassign = fdata["FIBERASSIGN"].read()
            ftargets = fdata["TARGETS"].read()
            for lid, tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    fassign["LOCATION"], fassign["TARGETID"],
                    fassign["TARGET_RA"], fassign["TARGET_DEC"],
                    fassign["SUBPRIORITY"], fassign["PRIORITY"],
                    fassign["OBSCONDITIONS"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)
                    self.assertEqual(tgsub, props.subpriority)
                    self.assertEqual(tgprior, props.priority)
                    self.assertEqual(tgobs, props.obscond)
            for tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    ftargets["TARGETID"], ftargets["RA"], ftargets["DEC"],
                    ftargets["SUBPRIORITY"], ftargets["PRIORITY"],
                    ftargets["OBSCONDITIONS"]):
                props = tgs.get(tgid)
                self.assertEqual(tgra, props.ra)
                self.assertEqual(tgdec, props.dec)
                self.assertEqual(tgsub, props.subpriority)
                self.assertEqual(tgprior, props.priority)
                self.assertEqual(tgobs, props.obscond)

            # Check full format
            infile = os.path.join(test_dir,
                                  "full_tile-{:06d}.fits".format(tid))
            fdata = fitsio.FITS(infile, "r")
            fassign = fdata["FIBERASSIGN"].read()
            ftargets = fdata["TARGETS"].read()
            for lid, tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    fassign["LOCATION"], fassign["TARGETID"],
                    fassign["TARGET_RA"], fassign["TARGET_DEC"],
                    fassign["SUBPRIORITY"], fassign["PRIORITY"],
                    fassign["OBSCONDITIONS"]):
                if tgid >= 0:
                    self.assertEqual(tgid, tdata[lid])
                    props = tgs.get(tgid)
                    self.assertEqual(tgra, props.ra)
                    self.assertEqual(tgdec, props.dec)
                    self.assertEqual(tgsub, props.subpriority)
                    self.assertEqual(tgprior, props.priority)
                    self.assertEqual(tgobs, props.obscond)
            for tgid, tgra, tgdec, tgsub, tgprior, tgobs in zip(
                    ftargets["TARGETID"], ftargets["RA"], ftargets["DEC"],
                    ftargets["SUBPRIORITY"], ftargets["PRIORITY"],
                    ftargets["OBSCONDITIONS"]):
                props = tgs.get(tgid)
                self.assertEqual(tgra, props.ra)
                self.assertEqual(tgdec, props.dec)
                self.assertEqual(tgsub, props.subpriority)
                self.assertEqual(tgprior, props.priority)
                self.assertEqual(tgobs, props.obscond)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="basic_tile-",
                   plot_dir=test_dir,
                   plot_prefix="basic_tile-",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="full_tile-",
                   plot_dir=test_dir,
                   plot_prefix="full_tile-",
                   result_split_dir=False,
                   petals=plotpetals,
                   serial=True)
        return
コード例 #6
0
ファイル: test_assign.py プロジェクト: rstaten/fiberassign
    def test_fieldrot(self):
        test_dir = test_subdir_create("assign_test_fieldrot")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        # Simulate the tiles
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)

        # petal mapping
        rotator = petal_rotation(1, reverse=False)

        rots = [0, 36]

        tile_ids = None

        for rt in rots:
            odir = "theta_{:02d}".format(rt)

            tgs = Targets()
            load_target_file(tgs, input_mtl)
            load_target_file(tgs, input_std)
            load_target_file(tgs, input_sky)
            load_target_file(tgs, input_suppsky)

            # Create a hierarchical triangle mesh lookup of the targets
            # positions
            tree = TargetTree(tgs, 0.01)

            # Manually override the field rotation
            tiles = load_tiles(tiles_file=tfile, obstheta=float(rt))
            if tile_ids is None:
                tile_ids = list(tiles.id)

            # Simulate a fake focalplane
            fp, exclude, state = sim_focalplane(rundate=test_assign_date,
                                                fakepos=True)

            # Load the focalplane
            hw = load_hardware(focalplane=(fp, exclude, state))

            # Compute the targets available to each fiber for each tile.
            tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

            # Compute the fibers on all tiles available for each target
            favail = LocationsAvailable(tgsavail)

            # Pass empty map of STUCK positioners that land on good sky
            stucksky = {}

            # Create assignment object
            asgn = Assignment(tgs, tgsavail, favail, stucksky)

            # First-pass assignment of science targets
            asgn.assign_unused(TARGET_TYPE_SCIENCE)

            out = os.path.join(test_dir, odir)

            write_assignment_fits(tiles, asgn, out_dir=out, all_targets=True)

            ppet = 6
            if odir == "theta_36":
                ppet = rotator[6]
            plot_tiles(hw,
                       tiles,
                       result_dir=out,
                       plot_dir=out,
                       real_shapes=True,
                       petals=[ppet],
                       serial=True)

            # Explicitly free everything
            del asgn
            del favail
            del tgsavail
            del hw
            del tiles
            del tree
            del tgs

        # For each tile, compare the assignment output and verify that they
        # agree with a one-petal rotation.

        # NOTE:  The comparison below will NOT pass, since we are still
        # Sorting by highest priority available target and then (in case
        # of a tie) by fiber ID.  See line 333 of assign.cpp.  Re-enable this
        # test after that is changed to sort by location in case of a tie.

        # for tl in tile_ids:
        #     orig_path = os.path.join(
        #         test_dir, "theta_00", "fiberassign_{:06d}.fits".format(tl)
        #     )
        #     orig_header, orig_data, _, _, _ = \
        #         read_assignment_fits_tile((tl, orig_path))
        #     rot_path = os.path.join(
        #         test_dir, "theta_36", "fiberassign_{:06d}.fits".format(tl)
        #     )
        #     rot_header, rot_data, _, _, _ = \
        #         read_assignment_fits_tile((tl, rot_path))
        #     comppath = os.path.join(
        #         test_dir, "comp_00-36_{:06d}.txt".format(tl)
        #     )
        #     with open(comppath, "w") as fc:
        #         for dev, petal, tg in zip(
        #                 orig_data["DEVICE_LOC"], orig_data["PETAL_LOC"],
        #                 orig_data["TARGETID"]
        #         ):
        #             for newdev, newpetal, newtg in zip(
        #                     rot_data["DEVICE_LOC"], rot_data["PETAL_LOC"],
        #                     rot_data["TARGETID"]
        #             ):
        #                 rpet = rotator[newpetal]
        #                 if (newdev == dev) and (rpet == petal):
        #                     fc.write(
        #                         "{}, {} = {} : {}, {} = {}\n"
        #                         .format(petal, dev, tg, rpet, newdev, newtg)
        #                     )
        #                     # self.assertEqual(newtg, tg)

        return
コード例 #7
0
    def test_full(self):
        test_dir = test_subdir_create("assign_test_full")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        nscience = sim_targets(input_mtl, TARGET_TYPE_SCIENCE, 0)
        nstd = sim_targets(input_std, TARGET_TYPE_STANDARD, nscience)
        nsky = sim_targets(input_sky, TARGET_TYPE_SKY, (nscience + nstd))

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Read hardware properties
        fstatus = os.path.join(test_dir, "fiberstatus.ecsv")
        sim_status(fstatus)
        hw = load_hardware(status_file=fstatus)
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = FibersAvailable(tgsavail)

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail)

        # First-pass assignment of science targets
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Redistribute science targets
        asgn.redistribute_science()

        # Assign standards, 10 per petal
        asgn.assign_unused(TARGET_TYPE_STANDARD, 10)
        asgn.assign_force(TARGET_TYPE_STANDARD, 10)

        # Assign sky to unused fibers, up to 40 per petal
        asgn.assign_unused(TARGET_TYPE_SKY, 40)
        asgn.assign_force(TARGET_TYPE_SKY, 40)

        # If there are any unassigned fibers, try to place them somewhere.
        asgn.assign_unused(TARGET_TYPE_SCIENCE)
        asgn.assign_unused(TARGET_TYPE_SKY)

        write_assignment_fits(tiles, asgn, out_dir=test_dir, all_targets=True)

        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   plot_dir=test_dir,
                   petals=[0],
                   serial=True)

        qa_tiles(hw, tiles, result_dir=test_dir)

        qadata = None
        with open(os.path.join(test_dir, "qa.json"), "r") as f:
            qadata = json.load(f)

        for tile, props in qadata.items():
            self.assertEqual(4495, props["assign_science"])
            self.assertEqual(100, props["assign_std"])
            self.assertEqual(400, props["assign_sky"])

        plot_qa(qadata,
                os.path.join(test_dir, "qa"),
                outformat="pdf",
                labels=True)

        return
コード例 #8
0
ファイル: test_qa.py プロジェクト: CesarArroyo09/fiberassign
    def test_science(self):
        set_matplotlib_pdf_backend()
        import matplotlib.pyplot as plt
        test_dir = test_subdir_create("qa_test_science")
        log_file = os.path.join(test_dir, "log.txt")

        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        # For this test, we will use just 2 science target classes, in order to verify
        # we get approximately the correct distribution
        sdist = [(3000, 1, 0.25, "QSO"), (2000, 1, 0.75, "ELG")]
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               0,
                               density=self.density_science,
                               science_frac=sdist)

        log_msg = "Simulated {} science targets\n".format(nscience)

        tgs = Targets()
        load_target_file(tgs, input_mtl)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Read hardware properties
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail)

        # First-pass assignment of science targets
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Redistribute
        asgn.redistribute_science()

        write_assignment_fits(tiles, asgn, out_dir=test_dir, all_targets=True)

        tile_ids = list(tiles.id)

        merge_results([input_mtl],
                      list(),
                      tile_ids,
                      result_dir=test_dir,
                      copy_fba=False)

        # if "TRAVIS" not in os.environ:
        #     plot_tiles(
        #         hw,
        #         tiles,
        #         result_dir=test_dir,
        #         plot_dir=test_dir,
        #         real_shapes=True,
        #         serial=True
        #     )

        qa_targets(hw,
                   tiles,
                   result_dir=test_dir,
                   result_prefix="fiberassign-")

        # Load the target catalog so that we have access to the target properties

        fd = fitsio.FITS(input_mtl, "r")
        scidata = np.array(np.sort(fd[1].read(), order="TARGETID"))
        fd.close()
        del fd

        # How many possible positioner assignments did we have?
        nassign = 5000 * len(tile_ids)

        possible = dict()
        achieved = dict()

        namepat = re.compile(r".*/qa_target_count_(.*)_init-(.*)\.fits")
        for qafile in glob.glob("{}/qa_target_count_*.fits".format(test_dir)):
            namemat = namepat.match(qafile)
            name = namemat.group(1)
            obs = int(namemat.group(2))
            if obs == 0:
                continue
            fd = fitsio.FITS(qafile, "r")
            fdata = fd["COUNTS"].read()
            # Sort by target ID so we can select easily
            fdata = np.sort(fdata, order="TARGETID")
            tgid = np.array(fdata["TARGETID"])
            counts = np.array(fdata["NUMOBS_DONE"])
            avail = np.array(fdata["NUMOBS_AVAIL"])
            del fdata
            fd.close()

            # Select target properties.  BOTH TARGET LISTS MUST BE SORTED.
            rows = np.where(
                np.isin(scidata["TARGETID"], tgid, assume_unique=True))[0]

            ra = np.array(scidata["RA"][rows])
            dec = np.array(scidata["DEC"][rows])
            dtarget = np.array(scidata["DESI_TARGET"][rows])
            init = np.array(scidata["NUMOBS_MORE"][rows])

            requested = obs * np.ones_like(avail)

            under = np.where(avail < requested)[0]
            over = np.where(avail > requested)[0]

            limavail = np.array(avail)
            limavail[over] = obs

            deficit = np.zeros(len(limavail), dtype=np.int)

            deficit[:] = limavail - counts
            deficit[avail == 0] = 0

            possible[name] = np.sum(limavail)
            achieved[name] = np.sum(counts)

            log_msg += "{}-{}:\n".format(name, obs)

            pindx = np.where(deficit > 0)[0]
            poor_tgid = tgid[pindx]
            poor_dtarget = dtarget[pindx]
            log_msg += "  Deficit > 0: {}\n".format(len(poor_tgid))
            poor_ra = ra[pindx]
            poor_dec = dec[pindx]
            poor_deficit = deficit[pindx]

            # Plot Target availability
            # Commented out by default, since in the case of high target density
            # needed for maximizing assignments, there are far more targets than
            # the number of available fiber placements.

            # marksize = 4 * np.ones_like(deficit)
            #
            # fig = plt.figure(figsize=(12, 12))
            # ax = fig.add_subplot(1, 1, 1)
            # ax.scatter(ra, dec, s=2, c="black", marker="o")
            # for pt, pr, pd, pdef in zip(poor_tgid, poor_ra, poor_dec, poor_deficit):
            #     ploc = plt.Circle(
            #         (pr, pd), radius=(0.05*pdef), fc="none", ec="red"
            #     )
            #     ax.add_artist(ploc)
            # ax.set_xlabel("RA", fontsize="large")
            # ax.set_ylabel("DEC", fontsize="large")
            # ax.set_title(
            #     "Target \"{}\": (min(avail, requested) - counts) > 0".format(
            #         name, obs
            #     )
            # )
            # #ax.legend(handles=lg, framealpha=1.0, loc="upper right")
            # plt.savefig(os.path.join(test_dir, "{}-{}_deficit.pdf".format(name, obs)), dpi=300, format="pdf")

        log_msg += \
            "Assigned {} tiles for total of {} possible target observations\n".format(
                len(tile_ids), nassign
            )
        ach = 0
        for nm in possible.keys():
            ach += achieved[nm]
            log_msg += \
                "  type {} had {} possible target obs and achieved {}\n".format(
                    nm, possible[nm], achieved[nm]
                )
        frac = 100.0 * ach / nassign
        log_msg += \
            "  {} / {} = {:0.2f}% of fibers were assigned\n".format(
                ach, nassign, frac
            )
        for nm in possible.keys():
            log_msg += \
                "  type {} had {:0.2f}% of achieved observations\n".format(
                    nm, achieved[nm] / ach
                )
        with open(log_file, "w") as f:
            f.write(log_msg)

        self.assertGreaterEqual(frac, 99.0)

        #- Test if qa-fiberassign script runs without crashing
        bindir = os.path.join(os.path.dirname(fiberassign.__file__), '..',
                              '..', 'bin')
        script = os.path.join(os.path.abspath(bindir), 'qa-fiberassign')
        if os.path.exists(script):
            fafiles = glob.glob(f"{test_dir}/fiberassign-*.fits")
            cmd = "{} --targets {}".format(script, " ".join(fafiles))
            err = subprocess.call(cmd.split())
            self.assertEqual(err, 0, f"FAILED ({err}): {cmd}")
        else:
            print(f"ERROR: didn't find {script}")
コード例 #9
0
    def test_full(self):
        test_dir = test_subdir_create("assign_test_full")
        np.random.seed(123456789)
        input_mtl = os.path.join(test_dir, "mtl.fits")
        input_std = os.path.join(test_dir, "standards.fits")
        input_sky = os.path.join(test_dir, "sky.fits")
        input_suppsky = os.path.join(test_dir, "suppsky.fits")
        tgoff = 0
        nscience = sim_targets(input_mtl,
                               TARGET_TYPE_SCIENCE,
                               tgoff,
                               density=self.density_science)
        tgoff += nscience
        nstd = sim_targets(input_std,
                           TARGET_TYPE_STANDARD,
                           tgoff,
                           density=self.density_standards)
        tgoff += nstd
        nsky = sim_targets(input_sky,
                           TARGET_TYPE_SKY,
                           tgoff,
                           density=self.density_sky)
        tgoff += nsky
        nsuppsky = sim_targets(input_suppsky,
                               TARGET_TYPE_SUPPSKY,
                               tgoff,
                               density=self.density_suppsky)

        tgs = Targets()
        load_target_file(tgs, input_mtl)
        load_target_file(tgs, input_std)
        load_target_file(tgs, input_sky)
        load_target_file(tgs, input_suppsky)

        # Create a hierarchical triangle mesh lookup of the targets positions
        tree = TargetTree(tgs, 0.01)

        # Read hardware properties
        fp, exclude, state = sim_focalplane(rundate=test_assign_date)
        hw = load_hardware(focalplane=(fp, exclude, state))
        tfile = os.path.join(test_dir, "footprint.fits")
        sim_tiles(tfile)
        tiles = load_tiles(tiles_file=tfile)

        # Compute the targets available to each fiber for each tile.
        tgsavail = TargetsAvailable(hw, tgs, tiles, tree)

        # Free the tree
        del tree

        # Compute the fibers on all tiles available for each target
        favail = LocationsAvailable(tgsavail)

        # Create assignment object
        asgn = Assignment(tgs, tgsavail, favail)

        # First-pass assignment of science targets
        asgn.assign_unused(TARGET_TYPE_SCIENCE)

        # Redistribute science targets
        asgn.redistribute_science()

        # Assign standards, 10 per petal
        asgn.assign_unused(TARGET_TYPE_STANDARD, 10)
        asgn.assign_force(TARGET_TYPE_STANDARD, 10)

        # Assign sky to unused fibers, up to 40 per petal
        asgn.assign_unused(TARGET_TYPE_SKY, 40)
        asgn.assign_force(TARGET_TYPE_SKY, 40)

        # Use supplemental sky to meet our requirements
        asgn.assign_unused(TARGET_TYPE_SUPPSKY, 40)
        asgn.assign_force(TARGET_TYPE_SUPPSKY, 40)

        # If there are any unassigned fibers, try to place them somewhere.
        asgn.assign_unused(TARGET_TYPE_SCIENCE)
        asgn.assign_unused(TARGET_TYPE_SKY)
        asgn.assign_unused(TARGET_TYPE_SUPPSKY)

        write_assignment_fits(tiles, asgn, out_dir=test_dir, all_targets=True)

        plotpetals = [0]
        #plotpetals = None
        plot_tiles(hw,
                   tiles,
                   result_dir=test_dir,
                   plot_dir=test_dir,
                   result_prefix="fba-",
                   real_shapes=True,
                   petals=plotpetals,
                   serial=True)

        qa_tiles(hw, tiles, result_dir=test_dir)

        qadata = None
        with open(os.path.join(test_dir, "qa.json"), "r") as f:
            qadata = json.load(f)

        for tile, props in qadata.items():
            self.assertTrue(props["assign_science"] >= 4485)
            self.assertEqual(100, props["assign_std"])
            self.assertTrue(
                (props["assign_sky"] + props["assign_suppsky"]) >= 400)

        plot_qa(qadata,
                os.path.join(test_dir, "qa"),
                outformat="pdf",
                labels=True)
        return
コード例 #10
0
tgsavail = TargetsAvailable(hw, tgs, nominal_tiles, tree)

# Compute the fibers on all tiles available for each target
favail = FibersAvailable(tgsavail)

# Create assignment object
asgn = Assignment(tgs, tgsavail, favail)

# --------------------------------------------------------------------------------------------------
# FIBER ASSIGNMENT PROCESS
#
# Fiber assignment process is carried out here. Results are stored in the Assignment type object.
# --------------------------------------------------------------------------------------------------

# First-pass assignment of science targets
asgn.assign_unused(TARGET_TYPE_SCIENCE)

# Redistribute science targets across available petals
asgn.redistribute_science()

# Assign standards, 10 per petal
asgn.assign_unused(TARGET_TYPE_STANDARD, 10)
asgn.assign_force(TARGET_TYPE_STANDARD, 10)

# Assign sky, up to 40 per petal
asgn.assign_unused(TARGET_TYPE_SKY, 40)
asgn.assign_force(TARGET_TYPE_SKY, 40)

# If there are any unassigned fibers, try to place them somewhere.
asgn.assign_unused(TARGET_TYPE_SCIENCE)
asgn.assign_unused(TARGET_TYPE_SKY)