コード例 #1
0
def generate_physics_data(datadir):
    """
    generate_physics_data(datadir)

    Generates data to use as the physics-informed image pairs

    This data is stored in a ./paired_data/ subfolder of <datadir>

    Parameters
    ----------
    datadir : String,
        Path to folder containing PhysicsDataConfig.yml config file

    Returns
    -------
    None.

    """

    config, psfconfigLR, psfconfigHR = load_config(datadir +
                                                   '/PhysicsDataConfig.yml')
    if 'real' in config['data']:
        # Load real ground truth and simulate a lower resolution
        simulate_lsm_convolution(config,
                                 psfconfigLR,
                                 psfconfigHR=None,
                                 data_mode='real')
    if 'sim' in config['data']:
        # Simulate HR and LR images of beads and speckle
        simulate_lsm_vectorial(config, psfconfigLR, psfconfigHR)
        simulate_lsm_convolution(config,
                                 psfconfigLR,
                                 psfconfigHR,
                                 data_mode='sim')
コード例 #2
0
def prepare_real_data(datadir):
    config, psfconfigLR, psfconfigHR = load_config(datadir +
                                                   '/TrainConfig.yml')
    rootdir = os.path.join(config['dir'], config['date'])
    realdir = os.path.join(rootdir, 'real')
    realsource = config['data_real_dir']

    (_, _, files) = next(os.walk(realsource), (None, None, []))
    files = [f for f in files if f.endswith(".png")]

    os.makedirs(realdir, exist_ok=True)

    for i, v in enumerate(files):
        shutil.copyfile(os.path.join(realsource, v), os.path.join(realdir, v))
コード例 #3
0
def prepare_sim_data(datadir):
    config, psfconfigLR, psfconfigHR = load_config(datadir +
                                                   '/TrainConfig.yml')

    if 'real' in config['data']:
        simulate_lsm_convolution(config,
                                 psfconfigLR,
                                 psfconfigHR=None,
                                 data_mode='real')
    if 'sim' in config['data']:
        simulate_lsm_vectorial(config, psfconfigLR, psfconfigHR)
        simulate_lsm_convolution(config,
                                 psfconfigLR,
                                 psfconfigHR,
                                 data_mode='sim')

    rootdir = os.path.join(config['dir'], config['date'])
    return rootdir
コード例 #4
0
def prepare_training_data(datadir, overwrite, **kwargs):
    train_real = True
    if 'data' in kwargs:
        if kwargs['data'] == 'sim':
            train_real = False

    config, psfconfigLR, psfconfigHR = load_config(datadir +
                                                   '/TrainConfig.yml')
    rootdir = config['dir']
    phys_dirs = config['phys_dirs'].split()
    if train_real:
        real_dirs = config['real_dirs'].split()

    # Prepare folders
    if train_real:
        dir_real = os.path.join(rootdir, 'real')
    dir_train = os.path.join(rootdir, 'train')
    dir_val = os.path.join(rootdir, 'val')

    if os.path.exists(dir_train):
        if overwrite:
            if train_real:
                shutil.rmtree(dir_real)
            shutil.rmtree(dir_train)
            shutil.rmtree(dir_val)
        else:
            return

    if train_real:
        os.makedirs(dir_real, exist_ok=False)
    os.makedirs(dir_train, exist_ok=False)
    os.makedirs(dir_val, exist_ok=False)

    # Count total phys images
    n_images_phys = 0
    for dir_ in phys_dirs:
        file_list = [f for f in glob.glob(dir_ + "\\*.png")]
        n_images_phys += len(file_list)

    # Validation shuffler
    n_val = config['n_val']
    rperm = np.random.permutation(n_images_phys)
    rperm = rperm[:n_val]

    # Copy phys images
    n_offset = 0
    for dir_ in phys_dirs:
        (_, _, files) = next(os.walk(dir_), (None, None, []))
        files = [f for f in files if f.endswith(".png")]

        n_images = len(files)
        img_shuffle = np.random.permutation(n_images)

        for i, v in enumerate(files):
            img_name = ('%05i.png' % img_shuffle[i])
            if n_offset + i in rperm:
                shutil.copyfile(os.path.join(dir_, v),
                                os.path.join(dir_val, img_name))
            else:
                shutil.copyfile(os.path.join(dir_, v),
                                os.path.join(dir_train, img_name))

        n_offset += n_images

    # Copy real images
    if train_real:
        for dir_ in real_dirs:
            (_, _, files) = next(os.walk(dir_), (None, None, []))
            files = [f for f in files if f.endswith(".png")]

            n_images = len(files)
            img_shuffle = np.random.permutation(n_images)

            for i, v in enumerate(files):
                img_name = ('%05i.png' % img_shuffle[i])
                shutil.copyfile(os.path.join(dir_, v),
                                os.path.join(dir_real, img_name))
コード例 #5
0
# USER INPUT
# =============================================================================
# Folder with TrainConfig.yml
networkdir = [
    'E:\\LSM-deeplearning\\TrainedModels\\20210222_PureSimBeams\\20210222_Airy_g0p5_l30',
    'E:\\LSM-deeplearning\\TrainedModels\\20210222_PureSimBeams\\20210222_Airy_g1_l30',
    'E:\\LSM-deeplearning\\TrainedModels\\20210222_PureSimBeams\\20210222_Airy_g2_l30',
    'E:\\LSM-deeplearning\\TrainedModels\\20210222_PureSimBeams\\20210222_Bessel_rr0p8_n5',
    'E:\\LSM-deeplearning\\TrainedModels\\20210222_PureSimBeams\\20210222_Bessel_rr1p1_n5',
    'E:\\LSM-deeplearning\\TrainedModels\\20210222_PureSimBeams\\20210222_Gauss_100_l30',
    'E:\\LSM-deeplearning\\TrainedModels\\20210222_PureSimBeams\\20210222_Gauss_50_l30'
]

# =============================================================================
# MAIN
# =============================================================================
for dir_ in networkdir:
    config, psfconfigLR, psfconfigHR = load_config(dir_ + '/TrainConfig.yml')

    # Prepare data for training
    prepare_training_data(dir_, overwrite=False, data='sim')

    # Train
    conf = dl.Config()
    conf.overwrite_defaults(config)

    with open(dir_ + '//TrainRun.yml', 'w') as file:
        yaml.dump(conf, file)

    dl.train_model(conf, dir_)
コード例 #6
0
def train_model(conf, datadir):
    config, _, _ = load_config(datadir + '/TrainConfig.yml')
    dataroot = datadir

    cuda = True if torch.cuda.is_available() else False
    Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

    # Prepare folders
    imagedir = os.path.join(dataroot, 'training_images')
    modeldir = os.path.join(dataroot, 'saved_models')

    os.makedirs(imagedir, exist_ok=True)
    os.makedirs(modeldir, exist_ok=True)

    # Loss functions
    criterion_GAN = torch.nn.MSELoss()
    criterion_pixelwise = torch.nn.L1Loss()

    # Loss weight of L1 pixel-wise loss between translated image and real image
    gamma_pixel = conf.gamma_pixel
    lambda_pixel = conf.lambda_pixel

    # Calculate output of image discriminator (PatchGAN)
    patch = (1, conf.img_size // 2**4, conf.img_size // 2**4)

    # Initialize generator and discriminator
    if conf.img_size == 64:
        if conf.model.lower() == 'unet':
            generator = GeneratorUNet64US(in_channels=conf.channels,
                                          out_channels=conf.channels)
        elif conf.model.lower() == 'resnet':
            generator = GeneratorResNet(in_channels=conf.channels,
                                        out_channels=conf.channels)
        else:
            print("No compatible model specified")
            return
    elif conf.img_size == 128:
        generator = GeneratorUNet128_x2(in_channels=conf.channels,
                                        out_channels=conf.channels)
    elif conf.img_size == 256:
        generator = GeneratorUNet256_4x(in_channels=conf.channels,
                                        out_channels=conf.channels)
    else:
        print("No model for image size specified")
        return

    if conf.spectral_norm:
        discriminator = DiscriminatorSN(in_channels=conf.channels)
    else:
        discriminator = Discriminator(in_channels=conf.channels)

    if conf.dual_D:
        if conf.spectral_norm:
            discriminator2 = DiscriminatorSN(in_channels=conf.channels)
        else:
            discriminator2 = Discriminator(in_channels=conf.channels)

    if cuda:
        generator = generator.cuda()
        discriminator = discriminator.cuda()
        criterion_GAN.cuda()
        criterion_pixelwise.cuda()
        if conf.dual_D:
            discriminator2.cuda()

    if conf.epoch != 0:
        # Load pretrained models
        generator.load_state_dict(
            torch.load(os.path.join(modeldir,
                                    'generator_%d.pth' % conf.epoch)))
        discriminator.load_state_dict(
            torch.load(
                os.path.join(modeldir, 'discriminator_%d.pth' % conf.epoch)))
        if conf.dual_D:
            discriminator2.load_state_dict(
                torch.load(
                    os.path.join(modeldir,
                                 'discriminator2_%d.pth' % conf.epoch)))
    else:
        # Initialize weights
        generator.apply(weights_init_normal)
        discriminator.apply(weights_init_normal)
        if conf.dual_D:
            discriminator2.apply(weights_init_normal)

    # Optimizers
    optimizer_G = torch.optim.Adam(generator.parameters(),
                                   lr=conf.lrG,
                                   betas=(conf.b1, conf.b2))
    optimizer_D = torch.optim.Adam(discriminator.parameters(),
                                   lr=conf.lrD,
                                   betas=(conf.b1, conf.b2))
    if conf.dual_D:
        optimizer_D2 = torch.optim.Adam(discriminator2.parameters(),
                                        lr=conf.lrD,
                                        betas=(conf.b1, conf.b2))

    # Rate schedule
    scheduler_G = torch.optim.lr_scheduler.MultiStepLR(optimizer_G,
                                                       milestones=[150, 250],
                                                       gamma=0.1)
    scheduler_D = torch.optim.lr_scheduler.MultiStepLR(optimizer_D,
                                                       milestones=[150, 250],
                                                       gamma=0.1)
    if conf.dual_D:
        scheduler_D2 = torch.optim.lr_scheduler.MultiStepLR(
            optimizer_D2, milestones=[150, 250], gamma=0.1)

    # =============================================================================
    # Configure dataloaders
    # =============================================================================
    transforms_ = [
        transforms.CenterCrop((conf.img_size, conf.img_size)),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ]

    # Simulation train
    dataset_train = ImageDatasetLSM(root=dataroot,
                                    transforms_=transforms_,
                                    mode='train')
    dataloader_train = DataLoader(
        dataset=dataset_train,
        batch_size=len(dataset_train),
        shuffle=True,
        num_workers=conf.n_cpu,
    )
    # Simulation validation
    dataset_val = ImageDatasetLSM(root=dataroot,
                                  transforms_=transforms_,
                                  mode='val')
    dataloader_val = DataLoader(
        dataset=dataset_val,
        batch_size=len(dataset_val),
        shuffle=False,
        num_workers=0,
    )
    dataloader_val_display = DataLoader(
        dataset=dataset_val,
        batch_size=12,
        shuffle=False,
        num_workers=0,
    )

    # =============================================================================
    # Visualisation
    # =============================================================================
    def sample_images(batches_done):
        """Saves a generated sample from the validation set"""
        imgs = next(iter(dataloader_val_display))
        real_LR = Variable(imgs["LR"].type(Tensor))
        real_HR = Variable(imgs["HR"].type(Tensor))
        fake_HR = generator(real_LR)
        img_sample = torch.cat((real_HR.data, fake_HR.data, real_LR.data), -2)
        save_image(img_sample,
                   imagedir + "/%s.png" % (batches_done),
                   nrow=6,
                   normalize=True)

    class Reporter:
        def __init__(self):
            self.G_loss_train = []
            self.D_loss_train = []
            self.pix_loss_train = []
            self.adv_loss_train = []
            self.sal_loss_train = []
            self.G_loss_val = []
            self.D_loss_val = []
            self.pix_loss_val = []
            self.adv_loss_val = []
            self.sal_loss_val = []
            self.G_loss = []
            self.D_loss = []
            self.pix_loss = []
            self.adv_loss = []
            self.sal_loss = []

        def record(self, dloss, gloss, pix, adv, sal):
            self.D_loss.append(dloss)
            self.G_loss.append(gloss)
            self.pix_loss.append(pix)
            self.adv_loss.append(adv)
            self.sal_loss.append(sal)

        def mean(self, data):
            return sum(data) / len(data)

        def push(self, where):
            if where == 'train':
                self.D_loss_train.append(self.mean(self.D_loss))
                self.G_loss_train.append(self.mean(self.G_loss))
                self.pix_loss_train.append(self.mean(self.pix_loss))
                self.adv_loss_train.append(self.mean(self.adv_loss))
                self.sal_loss_train.append(self.mean(self.sal_loss))
            elif where == 'val':
                self.D_loss_val.append(self.mean(self.D_loss))
                self.G_loss_val.append(self.mean(self.G_loss))
                self.pix_loss_val.append(self.mean(self.pix_loss))
                self.adv_loss_val.append(self.mean(self.adv_loss))
                self.sal_loss_val.append(self.mean(self.sal_loss))

            self.G_loss = []
            self.D_loss = []
            self.pix_loss = []
            self.adv_loss = []
            self.sal_loss = []

        def normalize(self):
            self.D_lossN = self.D_loss / np.max(self.D_loss)
            self.G_lossN = self.G_loss / np.max(self.G_loss)
            self.pix_lossN = self.pix_loss / np.max(self.pix_loss)
            self.adv_lossN = self.adv_loss / np.max(self.adv_loss)
            self.sal_lossN = self.sal_loss / np.max(self.sal_loss)

    # =========================================================================
    # Training
    # =========================================================================
    prev_time = time.time()
    time_left = 0

    report = Reporter()
    fig, ax = plt.subplots()

    full_batch = next(iter(dataloader_train))
    val_batch = next(iter(dataloader_val))

    n_batches = (len(dataset_train) // conf.batch_size)
    n_batches_val = (len(dataset_val) // conf.batch_size)

    # =========================================================================
    # Training
    # =========================================================================
    def train(i, time_left, epoch):
        # Data load
        batch_LR = full_batch["LR"][i * conf.batch_size:min(
            (i + 1) * conf.batch_size, len(dataset_train))]
        batch_HR = full_batch["HR"][i * conf.batch_size:min(
            (i + 1) * conf.batch_size, len(dataset_train))]

        # Model inputs
        real_sim_LR = Variable(batch_LR.type(Tensor))
        real_sim_HR = Variable(batch_HR.type(Tensor))

        # Adversarial ground truths
        if conf.smooth_labels:
            valid = Variable(Tensor(0.9 * np.ones(
                (real_sim_LR.size(0), *patch))),
                             requires_grad=False)
            fake = Variable(Tensor(0.1 * np.ones(
                (real_sim_LR.size(0), *patch))),
                            requires_grad=False)
        else:
            valid = Variable(Tensor(np.ones((real_sim_LR.size(0), *patch))),
                             requires_grad=False)
            fake = Variable(Tensor(np.zeros((real_sim_LR.size(0), *patch))),
                            requires_grad=False)

        # ------------------
        #  Train Generator
        # ------------------
        optimizer_G.zero_grad()

        # Train simulated data
        fake_sim_HR = generator(real_sim_LR)

        # Adversarial GAN loss
        pred_fake = discriminator(fake_sim_HR, real_sim_LR)
        loss_GAN = criterion_GAN(pred_fake, valid)
        if conf.dual_D:
            pred_fake2 = discriminator2(fake_sim_HR, real_sim_LR)
            loss_GAN2 = criterion_GAN(pred_fake2, valid)
            # Criteria
            # loss_GAN = torch.min(loss_GAN, loss_GAN2)
            loss_GAN = torch.max(loss_GAN, loss_GAN2)

        # Pixel-wise loss
        loss_pixel = criterion_pixelwise(fake_sim_HR, real_sim_HR)

        # Backpropagate losses
        if conf.loss_decay:
            loss_decay = 2 * (1 - epoch / conf.n_epochs)
        else:
            loss_decay = 1
        loss_G = loss_decay * (gamma_pixel * loss_GAN +
                               lambda_pixel * loss_pixel)
        loss_G.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------
        optimizer_D.zero_grad()
        # Real loss
        pred_real = discriminator(real_sim_HR, real_sim_LR)
        loss_real = criterion_GAN(pred_real, valid)
        # Fake loss
        pred_fake = discriminator(fake_sim_HR.detach(), real_sim_LR)
        loss_fake = criterion_GAN(pred_fake, fake)
        # Total loss
        loss_D = loss_decay * (0.5 * (loss_real + loss_fake))
        loss_D.backward()
        optimizer_D.step()

        if conf.dual_D:
            optimizer_D2.zero_grad()
            # Real loss
            pred_real = discriminator2(real_sim_HR, real_sim_LR)
            loss_real = criterion_GAN(pred_real, valid)
            # Fake loss
            pred_fake = discriminator2(fake_sim_HR.detach(), real_sim_LR)
            loss_fake = criterion_GAN(pred_fake, fake)
            # Total loss
            loss_D2 = loss_decay * (0.5 * (loss_real + loss_fake))
            loss_D2.backward()
            optimizer_D2.step()
            loss_D = 0.5 * (loss_D + loss_D2)

        # Print log
        sys.stdout.write(
            "\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, pixel: %f, adv: %f] [S loss: %f] ETA: %s"
            % (
                epoch + 1,
                conf.n_epochs,
                i + 1,
                n_batches,
                loss_D.item() / loss_decay,
                loss_G.item() / loss_decay,
                loss_pixel.item() * lambda_pixel,
                loss_GAN.item() * gamma_pixel,
                0,
                time_left,
            ))

        # Record values
        report.record(loss_D.item() / loss_decay,
                      loss_G.item() / loss_decay,
                      loss_pixel.item() * lambda_pixel,
                      loss_GAN.item() * gamma_pixel, 0)

    def validate(i, time_left, epoch):
        # Data load
        batch_LR = val_batch["LR"][i * conf.batch_size:min(
            (i + 1) * conf.batch_size, len(dataset_val))]
        batch_HR = val_batch["HR"][i * conf.batch_size:min(
            (i + 1) * conf.batch_size, len(dataset_val))]

        # Model inputs
        real_sim_LR = Variable(batch_LR.type(Tensor))
        real_sim_HR = Variable(batch_HR.type(Tensor))

        # Adversarial ground truths
        if conf.smooth_labels:
            valid = Variable(Tensor(0.9 * np.ones(
                (real_sim_LR.size(0), *patch))),
                             requires_grad=False)
            fake = Variable(Tensor(0.1 * np.ones(
                (real_sim_LR.size(0), *patch))),
                            requires_grad=False)
        else:
            valid = Variable(Tensor(np.ones((real_sim_LR.size(0), *patch))),
                             requires_grad=False)
            fake = Variable(Tensor(np.zeros((real_sim_LR.size(0), *patch))),
                            requires_grad=False)

        # ------------------
        #  Validate Generator
        # ------------------
        # Train simulated data
        fake_sim_HR = generator(real_sim_LR)

        # Adversarial GAN loss
        pred_fake = discriminator(fake_sim_HR, real_sim_LR)
        loss_GAN = criterion_GAN(pred_fake, valid)
        if conf.dual_D:
            pred_fake2 = discriminator2(fake_sim_HR, real_sim_LR)
            loss_GAN2 = criterion_GAN(pred_fake2, valid)
            # Criteria
            loss_GAN = torch.min(loss_GAN, loss_GAN2)

        # Pixel-wise loss
        loss_pixel = criterion_pixelwise(fake_sim_HR, real_sim_HR)

        # Backpropagate losses
        loss_G = gamma_pixel * loss_GAN + lambda_pixel * loss_pixel

        # ---------------------
        #  Validate Discriminator
        # ---------------------
        # Real loss
        pred_real = discriminator(real_sim_HR, real_sim_LR)
        loss_real = criterion_GAN(pred_real, valid)
        # Fake loss
        pred_fake = discriminator(fake_sim_HR.detach(), real_sim_LR)
        loss_fake = criterion_GAN(pred_fake, fake)
        # Total loss
        loss_D = 0.5 * (loss_real + loss_fake)

        if conf.dual_D:
            # Real loss
            pred_real = discriminator2(real_sim_HR, real_sim_LR)
            loss_real = criterion_GAN(pred_real, valid)
            # Fake loss
            pred_fake = discriminator2(fake_sim_HR.detach(), real_sim_LR)
            loss_fake = criterion_GAN(pred_fake, fake)
            # Total loss
            loss_D2 = 0.5 * (loss_real + loss_fake)
            loss_D = 0.5 * (loss_D + loss_D2)

        # Print log
        sys.stdout.write(
            "\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, pixel: %f, adv: %f] [S loss: %f] ETA: %s"
            % (
                epoch + 1,
                conf.n_epochs,
                i + 1,
                n_batches,
                loss_D.item(),
                loss_G.item(),
                loss_pixel.item() * lambda_pixel,
                loss_GAN.item() * gamma_pixel,
                0,
                time_left,
            ))

        # Record values
        report.record(loss_D.item(), loss_G.item(),
                      loss_pixel.item() * lambda_pixel,
                      loss_GAN.item() * gamma_pixel, 0)

    # =========================================================================
    # Main train loop
    # =========================================================================
    for epoch in range(conf.epoch, conf.n_epochs):
        for i in range(n_batches):
            train(i, time_left, epoch)

        report.push('train')

        for j in range(n_batches_val):
            validate(j, time_left, epoch)

        report.push('val')

        # After epoch, update schedule
        if conf.scheduler:
            scheduler_D.step()
            scheduler_G.step()
            if conf.dual_D:
                scheduler_D2.step()

        # Save images
        sample_images(epoch)

        # Plot
        xx = np.linspace(1, len(report.G_loss_train), len(report.G_loss_train))
        plt.plot(xx, np.log(np.array(report.D_loss_train)), xx,
                 np.log(np.array(report.G_loss_train)), xx,
                 np.log(np.array(report.pix_loss_train)), ':g', xx,
                 np.log(np.array(report.adv_loss_train)), ':r')
        plt.legend(['D', 'G', 'pix', 'adv'])
        plt.draw()
        plt.pause(0.001)

        xx = np.linspace(1, len(report.G_loss_val), len(report.G_loss_val))
        plt.plot(xx, np.log(np.array(report.D_loss_train)), 'b', xx,
                 np.log(np.array(report.G_loss_train)), 'r', xx,
                 np.log(np.array(report.D_loss_val)), ':b', xx,
                 np.log(np.array(report.G_loss_val)), ':r')
        plt.legend(['D', 'G', 'D val', 'G val'])
        plt.draw()
        plt.pause(0.001)

        # Determine approximate time left
        epoch_left = conf.n_epochs - epoch
        time_left = datetime.timedelta(seconds=epoch_left *
                                       (time.time() - prev_time) / (epoch + 1))

        if ((conf.checkpoint_interval != -1
             and epoch % conf.checkpoint_interval == 0)
                or epoch == conf.n_epochs - 1):
            # Save model checkpoints
            torch.save(generator.state_dict(),
                       os.path.join(modeldir, 'generator_%d.pth' % epoch))
            torch.save(discriminator.state_dict(),
                       os.path.join(modeldir, 'discriminator_%d.pth' % epoch))
            if conf.dual_D:
                torch.save(
                    discriminator2.state_dict(),
                    os.path.join(modeldir, 'discriminator2_%d.pth' % epoch))

    # Save loss plot
    xx = np.linspace(1, len(report.G_loss_train), len(report.G_loss_train))
    fig, ax = plt.subplots()
    plt.plot(xx, np.log(np.array(report.D_loss_train)), xx,
             np.log(np.array(report.G_loss_train)), xx,
             np.log(np.array(report.pix_loss_train)), ':g', xx,
             np.log(np.array(report.adv_loss_train)), ':r')
    plt.legend(['D', 'G', 'pix', 'adv'])
    plt.draw()
    plt.pause(0.001)
    fig.savefig(os.path.join(imagedir, 'Losses.png'))

    xx = np.linspace(1, len(report.G_loss_val), len(report.G_loss_val))
    fig, ax = plt.subplots()
    plt.plot(xx, np.log(np.array(report.D_loss_train)), 'b', xx,
             np.log(np.array(report.G_loss_train)), 'r', xx,
             np.log(np.array(report.D_loss_val)), ':b', xx,
             np.log(np.array(report.G_loss_val)), ':r')
    plt.legend(['D', 'G', 'D val', 'G val'])
    plt.draw()
    plt.pause(0.001)
    fig.savefig(os.path.join(imagedir, 'LossesVal.png'))

    xx = np.linspace(1, len(report.G_loss_train), len(report.G_loss_train))
    fig, ax = plt.subplots()
    plt.plot(xx, np.log(np.array(report.pix_loss_train)), 'r', xx,
             np.log(np.array(report.adv_loss_train)), 'g', xx,
             np.log(np.array(report.sal_loss_train)), 'b', xx,
             np.log(np.array(report.pix_loss_val)), ':r', xx,
             np.log(np.array(report.adv_loss_val)), ':g')
    plt.legend(['pix', 'adv', 'sal', 'pix-val', 'adv-val'])
    plt.draw()
    plt.pause(0.001)

    # Save raw
    with open(os.path.join(imagedir, 'Losses.csv'), 'w', newline='') as myfile:
        wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
        wr.writerow(report.D_loss_train)
        wr.writerow(report.G_loss_train)
        wr.writerow(report.pix_loss_train)
        wr.writerow(report.adv_loss_train)
        wr.writerow(report.sal_loss_train)
        wr.writerow(report.D_loss_val)
        wr.writerow(report.G_loss_val)
        wr.writerow(report.pix_loss_val)
        wr.writerow(report.adv_loss_val)
        wr.writerow(report.sal_loss_val)