def collect_data(regions, pcode='p1'): '''Get the trees in JSON''' username = os.path.split(os.getenv('HOME'))[-1] foldername = get_figure_folder(username, 'first') fn_data = foldername+'data/' print fn_data data = [] for region in regions: fn = fn_data+'haplotype_tree_'+pcode+'_'+region+'.json' data.append({'region': region, 'pcode': pcode, 'tree': tree_from_json(fn)}) return data
def collect_data(regions, pcode='p1'): '''Get the trees in JSON''' username = os.path.split(os.getenv('HOME'))[-1] foldername = get_figure_folder(username, 'first') fn_data = foldername + 'data/' print fn_data data = [] for region in regions: fn = fn_data + 'haplotype_tree_' + pcode + '_' + region + '.json' data.append({ 'region': region, 'pcode': pcode, 'tree': tree_from_json(fn) }) return data
for frac, total, num_std, denom_std in zip(fraction, rev_div.loc[:,'divergence'],reversion_std, total_div_std): print frac, '+/-', np.sqrt(num_std**2/total**2 + denom_std**2*frac**2/total**2) #print reversion_std,total_div_std print "Consensus!=Founder:",np.mean(data[subtype]['consensus_distance'].values()) if __name__=="__main__": import argparse import matplotlib.pyplot as plt import pandas as pd parser = argparse.ArgumentParser(description="make figure") parser.add_argument('--redo', action = 'store_true', help = 'recalculate data') params=parser.parse_args() username = os.path.split(os.getenv('HOME'))[-1] foldername = get_figure_folder(username, 'first') fn_data = foldername+'data/' fn_data = fn_data + 'to_away.pickle' if not os.path.isfile(fn_data) or params.redo: #patients = ['p1', 'p6'] # other subtypes patients = ['p1', 'p2', 'p3','p5', 'p6', 'p8', 'p9','p10', 'p11'] # all subtypes regions = ['genomewide'] #regions = ['gag', 'pol', 'nef'] #, 'env'] #regions = ['p24', 'p17'] #, 'RT1', 'RT2', 'RT3', 'RT4', 'PR', # 'IN1', 'IN2', 'IN3','p15', 'vif', 'nef','gp41','gp1201'] cov_min = 1000 Sbins = np.array([0,0.03, 0.08, 0.25, 2]) Sbinc = 0.5*(Sbins[1:]+Sbins[:-1]) data = {}
# Script if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description="make figure for SNP correlations") parser.add_argument('--redo', action='store_true', help='recalculate data') params = parser.parse_args() VERBOSE = 2 pname = 'p11' n_time = 4 username = os.path.split(os.getenv('HOME'))[-1] foldername = get_figure_folder(username, 'controls') fn_data = foldername+'data/' fn_data = fn_data + 'allele_frequency_overlap.pickle' if not os.path.isfile(fn_data) or params.redo: patient = Patient.load(pname) samples = patient.samples[n_time] data = get_allele_frequency_overlap(sample, overlaps, cov_min=cov_min, VERBOSE=VERBOSE, qual_min=qual_min) estimate_templates_overlaps(sample, data) store_data(data, fn_data) else: data = load_data(fn_data)
# Script if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description="make figure for SNP correlations") parser.add_argument('--redo', action='store_true', help='recalculate data') params = parser.parse_args() VERBOSE = 2 pname = 'p11' n_time = 4 username = os.path.split(os.getenv('HOME'))[-1] foldername = get_figure_folder(username, 'controls') fn_data = foldername + 'data/' fn_data = fn_data + 'allele_frequency_overlap.pickle' if not os.path.isfile(fn_data) or params.redo: patient = Patient.load(pname) samples = patient.samples[n_time] data = get_allele_frequency_overlap(sample, overlaps, cov_min=cov_min, VERBOSE=VERBOSE, qual_min=qual_min) estimate_templates_overlaps(sample, data) store_data(data, fn_data)