コード例 #1
0
ファイル: stress_post.py プロジェクト: zhekan/MDrun
    def __init__(self, x, y):
        self.xFile = []
        self.yFile = '{}'.format(y[0])
        self.length = 0
        self.volume = 0
        self.peak = []
        self.filterSignal = []

        i = 0
        while i < len(x):
            self.xFile.append('{}'.format(x[i]))
            i += 1

        self.title = '{}'.format(namespace.title)
        self.output = '{}'.format(namespace.output)
        self.dataoutput = '{}'.format(namespace.dataoutput)
        self.dataStressFile = '{}'.format(namespace.dataStressFile)
        self.dataDir = '{}'.format(namespace.dataDir)
        self.distanceDump = '{}'.format(namespace.distanceDump)
        self.distanceStat = '{}'.format(namespace.distanceStat)

        self.xlabel = '{}'.format(namespace.xlabel)
        self.ylabel = '{}'.format(namespace.ylabel)

        self.l1 = '{}'.format(namespace.l1)
        self.l2 = '{}'.format(namespace.l2)
        self.l3 = '{}'.format(namespace.l3)

        self.time = np.array(getColumn(self.yFile, 0)).astype(float) * 0.001
        self.sxx = np.array(getColumn(self.yFile, 1)).astype(float)
        self.syy = np.array(getColumn(self.yFile, 2)).astype(float)
        self.szz = np.array(getColumn(self.yFile, 3)).astype(float)

        if namespace.toforce:
            self.sxx *= np.pi / 100
            self.syy *= np.pi / 100
            self.szz *= np.pi / 100

        self.computeDist()

        self.sxx /= self.volume
        self.syy /= self.volume
        self.szz /= self.volume

        if namespace.sumfilter:
            self.filterSignal = noiseFilter(self.syy, 5, 75)
            if namespace.plotpeaks:
                self.peakDetect(self.filterSignal, 12000, 40, 150, 5950)

        if namespace.writedata:
            self.writeToFile()

        if namespace.stdout and namespace.plotpeaks:
            self.stdOut()

        if namespace.dataStressFile:
            self.writeStressFile()

        self.computeDistAnalizeAtoms()
コード例 #2
0
def noiseFilterPlot(time, s):
    v = noiseFilter(s, 5, 100)
    plt.plot(time, v, 'k')
    # plt.plot(time[imax], vmax, 'c.', label=' %.2f' % (vmax))
    return v
コード例 #3
0
ファイル: temp_plot.py プロジェクト: zhekan/MDrun
def noiseFilterPlot(xs,s):
  v = noiseFilter(s,5,80)
  vavg = np.mean(v[ 0:( len(v) / 6 ) ])
  plt.plot(xs,v,'k', label=' %.2f'%(vavg))